loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Effects of Thermal Aging on the Structure and Properties of Polyvinylidene Fluoride

Polyvinylidene fluoride (PVDF) is a polymorphic semi-crystalline polymer withα,β,γandδand many other different crystalline phase forms [1], among whichαPhase-dominated PVDF has excellent properties such as high mechanical strength, high temperature resistance, and chemical resistance, and is the best choice for the inner sheath material in flexible pipes [2,3]. It is affected by the high temperature of 130 ℃ in the actual working condition of the pipeline, which is easy to cause structural changes and performance degradation. Therefore, the research on high temperature thermal aging of PVDF is of great significance for the practical application and modification development of the material. At present, research reports on thermal aging of PVDF cannot fully explain its long-term thermal aging behavior when applied to flexible pipe jackets. Silva et al. [2] studied the aging process of PVDF exposed to ethanol fuel and found that at 60 °C temperature The induced effect will not have a great influence on its chemical structure and dynamic mechanical properties. Cirilo[3] et al. conducted a 30-day thermal aging study of PVDF, and found that the annealing effect will occur in the material under the condition of 130 ℃ for a short time. However, the thermal aging research under long-term low temperature[2] or short-term high temperature[3] conditions is different from the long-term high temperature environmental conditions for the practical application of sheath materials, and domestic PVDF thermal aging related research has been rarely reported. . Therefore, this paper selects a long period of time (60 d) to simulate the actual working temperature (130 ℃) to conduct thermal aging research on PVDF, and systematically analyzes the influence of high temperature induced effects on the structure and properties of PVDF at different times, including crystallinity, crystallization Structure and mechanical properties, etc., through multi-scale analysis methods, from macroscopic to microscopic testing to characterize the change law of the material to fully understand the thermal aging behavior of PVDF, provide a theoretical reference for its further modification research, and prevent the functional failure of flexible pipes. theoretical support. 1 Experimental part 1.1 Reagents and instruments PVDF: model Kynar 400 COA, density 1.76~1.78 g/cm3, thickness 4 mm, thermal expansion coefficient 100~140μm/(m·K-1), melting point 170 ℃, operating temperature -40~150 ℃, Shanghai Sanaifu Co., Ltd. Electronic universal testing machine: Model WDW-5E, Jinan Star Testing Technology Co., Ltd.; Fourier transform infrared spectrometer: Model Nicolet iN10MX, Thermo Fisher, USA; X-ray diffractometer: XRD-7000S, Shimadzu, Japan; Differential Scanning Calorimeter: Model TGA/DSC1, METTLER TOLEDO. 1.2 Sample preparation and aging process The experimental raw materials were taken from standard dumbbell-shaped specimens cut from PVDF core tubes. For size information, refer to the ASTM D638 standard. The batch of PVDF specimens were placed in an oven and thermally aged for 0-60 d at a high temperature of 130 °C. The specimens were divided into 7 groups according to different aging times. One group of specimens was taken out every 10 d, and allowed to cool to room temperature. , mark its heat-aging days for testing. 1.3 Performance test and characterization 1.3.1 Macroscopic mechanical property test: The tensile test was carried out according to ASTM D638 standard. Using an electronic universal testing machine and setting the tensile rate to 5 mm/min, the same batch of mechanical tensile tests were performed on 7 groups of specimens with different aging days (0-60 d), and 5 specimens were taken from each group. The average value is obtained to obtain the tensile strength and elongation at break data of PVDF with different heat aging time. 1.3.2 Characterization of microcrystalline phase structure: X-ray diffraction (XRD) analysis, the wavelength is 0.154 nm, and the scanning range is 10.0°~60.0°, the scan speed is 1 (°)/min. Fourier transform infrared spectroscopy (FT-IR) analysis was performed using attenuated total reflection, operating in the range of 500 to 4000 cm-1, with a spectral resolution of 4 cm-1. For differential scanning calorimetry (DSC) analysis, a sample of about 10 mg was weighed and subjected to 2 heating-cooling cycles at a rate of 10 °C/min under nitrogen protection. The temperature ranged from 25 °C to 210 °C, and the crystallization of PVDF was recorded. melting curve. 2 Results and discussion 2.1 The effect of thermal aging on the mechanical properties of PVDF at different times Fig.1 shows the change of the tensile strength of PVDF with the aging time when the aging temperature is 130 ℃. It can be seen that with the prolongation of aging time, the tensile strength of PVDF increases first and then decreases. In the early stage of thermal aging, the tensile strength gradually increases, because short-term annealing can improve the structure of PVDF, the intermolecular arrangement is more compact, and the ability to resist external forces is enhanced, resulting in an increase in tensile strength [4,5]; After 40 d in the later period, the tensile strength decreased greatly, and until the end of aging, the tensile strength of PVDF had dropped from the maximum value to lower than the initial strength. It shows that the annealing effect in the later stage gradually disappears, and the attenuation effect of the high temperature aging on the tensile strength of PVDF occupies the main influence. Fig.2 shows the change of elongation at break of PVDF with aging.

GESTER International Co.,Limited highlighted the need to foster a human openness to technological innovation.

Review GESTER International Co.,Limited's progress at regular intervals, so we can continue with the strategies that work well and change or eliminate the ones that don't give the results we are looking for.

Provide textile testing equipment strategists with enough funds to adequately market our company and the products and services it provides.

The engineers and developers of GESTER International Co.,Limited are the best in their own professional way and we guarantee to provide related service to our dear customers.

If you are looking for best product, then here are some product like textile testing equipment, tensile tester manufacturers and tensile tester manufacturers in various styles which will surely meet your demand. Visit GESTER Instruments to know more!

GET IN TOUCH WITH Us
recommended articles
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
How to Improve Plastic Film Drop Dart Impact Strength
Discover actionable strategies to enhance the drop dart impact strength of plastic films for packaging, agriculture, and construction. Learn how material selection, additives, processing, and rigorous ASTM/ISO drop dart impact testing ensure product durability and prevent failure.
Heat Contact Machine GT-C101-The Ultimate Selection Guide

The Heat Contact Machine GT-C101 is a specialized testing instrument designed for evaluating the heat resistance and thermal protective performance of gloves, protective clothing, and other heat-resistant materials used in high-temperature environments. In industries such as smelting, casting, welding, and glass manufacturing, workers are frequently exposed to intense heat, making accurate testing of contact heat resistance essential for ensuring safety and compliance.

GT-C101 simulates real working conditions by measuring heat transfer delay and thermal transmission under instant contact with high-temperature surfaces. Fully compliant with EN 407, EN 702, and ISO 12127-1 standards, this machine provides precise, repeatable data for manufacturers, laboratories, and research institutions. With high-temperature capability up to 500°C, advanced calorimetry, digital monitoring, and adjustable contact speed, the Heat Contact Machine GT-C101 is an indispensable tool for developing and certifying next-generation PPE and heat-insulation materials.
Understanding the Color Fastness To Washing Testing Machine GT-D07
The GESTER GT-D07 Color Fastness To Washing Testing Machine is designed to evaluate the color durability of dyed fabrics under washing and dry-cleaning conditions. By simulating real washing processes, it helps determine how resistant a fabric is to fading and staining, ensuring consistency, reliability, and compliance with international standards. With stainless-steel construction, safety features, and precise temperature and timing control, the GT-D07 provides an efficient and standardized testing solution for textile manufacturers worldwide.
GESTER Presents Textile Testing Equipment at SAIGONTEX 2025
At SAIGONTEX 2025, GESTER showcased cutting-edge textile testing equipment, including tensile strength testers, Martindale abrasion testers, and hydrostatic head testers. Our high-precision, durable machines attracted global buyers, reinforcing GESTER’s leadership in textile quality control.
What Are the Test Methods for Fabric Bursting Strength?
Fabric bursting strength measures resistance to rupture under concentrated load. Three primary test methods are used:

Ball Burst Method (ASTM D3787): Steel ball penetration for textiles/films using testers like GT-C02-2.

Hydraulic Method (ISO 13938.1): Fluid pressure on rubber diaphragm for industrial fabrics via GT-C12A.

Pneumatic Method (ISO 13938.2): Compressed air for breathable materials tested with GT-C12B.
Results are influenced by raw materials, yarn properties,
How to Know the Fabric Shrinkage Test for Your Projects
Master fabric shrinkage testing with this definitive guide. Understand causes of shrinkage, industry standards (ISO, GB, AATCC), step-by-step testing methods using Wascator equipment, and strategies to minimize shrinkage for superior garment quality and customer satisfaction.
What are The Flame Retardant Test Methods ?
Flame retardant testing evaluates materials' ability to resist ignition and slow fire spread. This guide covers key textile test methods (45°, horizontal, vertical), standards (ASTM, ISO, BS), and equipment like flammability testers for upholstery, carpets, and fabrics.
Why GESTER Ranks as a Leading TPP Thermal Protective Performance Tester Exporter
As a trusted leading TPP Thermal Protective Performance Tester exporter, GESTER International Co., Ltd. brings 25+ years of R&D and manufacturing expertise to PPE safety testing. Our flagship GT-RC02 series TPP testers feature advanced dual-source thermal simulation, high-sensitivity sensors, and full digital automation—delivering precise, repeatable data to evaluate thermal protection for firefighter and industrial protective clothing. Fully compliant with global standards (NFPA 1971, EN 469, ISO), GESTER’s equipment is trusted by SGS, Intertek, and top testing institutes worldwide. Backed by ISO 9001 certification, global service in 160+ countries, and professional calibration support, we empower manufacturers and labs to meet stringent safety regulations and ensure life-saving thermal protection. Discover tailored TPP testing solutions for PPE excellence at GESTER.
Top Features of a Certified TDM Cut Resistance Tester Supplier for Laboratory Use
The demand for precise PPE safety testing has surged with the evolution of protective gear, making TDM (Tomodynamometer) cut resistance testing a critical process for evaluating protective gloves and industrial textiles. This article details the top features of a certified TDM cut resistance tester supplier for laboratory use, including compliance with international standards (EN 388, ISO 13997, ASTM F2992), high-precision mechanical engineering, automated workflows, robust data management, and integrated safety features. It highlights GESTER International Co., Ltd.—a 20+ year experienced manufacturer with ISO 9001 certification and partnerships with SGS, Intertek, and TUV—as a leading supplier, offering the GT-KC28 TDM Cut Test Machine and comprehensive services (on-site installation, calibration, global technical support). For laboratories seeking reliable, standard-compliant testing solutions to validate PPE safety claims, this article provides actionable insights into strategic procurement. Visit https://www.gesterinstruments.com/ for more technical specifications and PPE testing solutions.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect