loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Experiment on the measurement of combustible gas combustion parameters

Experimental purpose 1. Deepen the understanding of basic concepts such as the explosive limit concentration of combustible gas and the flame propagation speed of combustible gas, understand the structure of combustible gas flame, understand the mechanism and characteristics of premixed gas flame propagation, and master the resistance of metal mesh flame arresters The principle of fire explosion isolation;   2. Master the method of measuring the explosion limit and flame propagation speed and other parameters.    Experimental principle   When the mixture of combustible gas and air burns when it encounters a fire source, it will generate a lot of heat, which will cause the product to heat up, increase in temperature, and expand in volume. It will explode when the combustion is violent. Whether the mixed gas composed of combustible gas and air can explode in contact with a fire source is closely related to the concentration of combustible gas in the mixed gas. Only the combustible gas whose concentration is within the explosive limit concentration range will explode in the air. The so-called explosion limit refers to the highest or lowest concentration of combustible gas (expressed in volume percentage) that a mixture of combustible gas and air can explode when exposed to a fire source. The lowest concentration is called the lower explosion limit; the highest concentration is called the upper explosion limit. The reason for the explosive limit of combustible gas is that if the concentration of combustible gas is lower than the lower explosive limit concentration, the excess air has a strong cooling effect and the effect of destroying free radicals, making it difficult for explosive reactions; if the concentration of combustible gas is higher than the upper explosive limit concentration , Insufficient air suppresses the explosive reaction. When the concentration of combustible gas is near the stoichiometric concentration, the effect that is not conducive to the explosive reaction is the smallest, and the explosion is the most prone to occur and the most violent. The explosive limit of flammable mixtures can be approximated by empirical formulas, or can be determined by experimental methods.  The flame (ie combustion wave) propagates in the premixed gas. According to the theory of gas dynamics, it can be proved that there are two modes of propagation: normal flame propagation (deflagration) and detonation. The normal flame propagation mainly relies on the effect of heat transfer (heat conduction), which transfers the combustion heat in the flame to the unburned gas, which heats it up and ignites, so that the combustion wave propagates in the unburned gas; the detonation mainly relies on the high pressure effect of the shock wave. The phenomenon that the unburned gas is heated and ignited under the condition of approximately adiabatic compression, so that the combustion wave propagates in the unburned gas.   After ignition, whether the flammable mixture in the pipeline undergoes normal flame propagation or explosion (or even detonation) depends on many factors. Through experiments, it is found that the ignition in the detonation tube is easy to achieve an explosion, and the normal flame propagation can be obtained when ignited at the opening of the detonation tube; the combustible mixture in the short pipe is not easy to achieve detonation, and if the pipe is long enough, The combustible gas mixture will eventually achieve detonation; in a shorter pipeline, the turbulence intensity of the combustible gas mixture can be enhanced by adding baffles, etc., to achieve detonation.   When the flame propagates in a pipe full of combustible gas, the flame propagation speed will be affected by the heat dissipation of the pipe wall and the destruction of free radicals in the flame on the pipe wall. It is precisely because the flame arrestor can enhance the heat dissipation of the pipe wall and the destruction speed of free radicals on the solid phase, and play a role in preventing fire and explosion. Therefore, a flame arrestor is added to the combustible gas circulation pipeline that may burn or explode. To cut off the spread of burning or explosive flames. Generally used between high-heat equipment, combustion chambers, high-temperature oxidation furnaces, high-temperature reactors, etc. and pipelines that transport combustible gas and flammable liquid vapor, as well as containers, pipes, and equipment exhaust pipes for flammable liquids and combustible gases. The flame arrester is used to arrest the fire. Flame arresters generally use multi-layer metal meshes as flame-extinguishing elements. Such flame arresters are called metal mesh flame arresters. Flame suppression elements can also be composed of perforated plates, corrugated metal plates, and fine-grained packing layers. When using the flame arrester, it should be checked and repaired frequently to prevent the holes from being blocked and causing poor gas transmission, or being corroded and damaging the flame suppression components.   The fire and explosion-proof effect of the metal mesh flame arrester is affected by many factors, mainly including: metal mesh material, mesh number and number of layers, etc. Experiments have found that the fire-proof and explosion-proof effect of metal mesh with large thermal conductivity is better than that of metal mesh with low thermal conductivity; the fire-proof and explosion-proof effect of metal mesh with large mesh is better than that of metal mesh with smaller mesh of the same material. Good explosion-proof effect; multi-layer metal mesh has better fire and explosion-proof effect than single-layer metal mesh, but large-mesh metal mesh and multi-layer metal mesh will significantly increase the flow resistance of airflow.  

GET IN TOUCH WITH Us
recommended articles
What Are the Test Methods for Fabric Bursting Strength?
Fabric bursting strength measures resistance to rupture under concentrated load. Three primary test methods are used:

Ball Burst Method (ASTM D3787): Steel ball penetration for textiles/films using testers like GT-C02-2.

Hydraulic Method (ISO 13938.1): Fluid pressure on rubber diaphragm for industrial fabrics via GT-C12A.

Pneumatic Method (ISO 13938.2): Compressed air for breathable materials tested with GT-C12B.
Results are influenced by raw materials, yarn properties,
Water Resistance Testing Standards and Methods
Textile water resistance testing evaluates fabrics through three primary methods: hydrostatic pressure (measuring water penetration resistance), spray rating (assessing surface water repellency), and water repellency tests (quantifying water absorption). Hydrostatic pressure testing is critical for high-performance applications like outdoor apparel and diving gear, while spray rating evaluates surface staining for rainwear. Water repellency tests, such as the Bundesmann method, determine overall
Understanding the Color Fastness To Washing Testing Machine GT-D07
The GESTER GT-D07 Color Fastness To Washing Testing Machine is designed to evaluate the color durability of dyed fabrics under washing and dry-cleaning conditions. By simulating real washing processes, it helps determine how resistant a fabric is to fading and staining, ensuring consistency, reliability, and compliance with international standards. With stainless-steel construction, safety features, and precise temperature and timing control, the GT-D07 provides an efficient and standardized testing solution for textile manufacturers worldwide.
What is a Light Fastness Tester?
A Light Fastness Tester accelerates material aging by simulating sunlight (xenon lamps) and moisture to predict long-term durability. Used in textiles, automotive, plastics, and more, it follows AATCC TM 16, ISO 105-B02, and ASTM standards. Features include real-time light control, temperature/humidity regulation, and energy-efficient testing.
How to Know the Fabric Shrinkage Test for Your Projects
Master fabric shrinkage testing with this definitive guide. Understand causes of shrinkage, industry standards (ISO, GB, AATCC), step-by-step testing methods using Wascator equipment, and strategies to minimize shrinkage for superior garment quality and customer satisfaction.
Looking for a Laboratory Protective Clothing Tester Supplier? Key Criteria to Consider
As global demand for high-performance PPE surges, selecting a qualified laboratory protective clothing tester supplier becomes critical for manufacturers and regulators. This article outlines core selection criteria: compliance with international standards (ISO, EN, ASTM), comprehensive protective gear tests (particle resistance, fluid barrier, thermal resistance, electrostatic safety), manufacturer qualifications (ISO 9001 certification, partnerships with SGS/TUV/Intertek), equipment precision (automation, modular design, data traceability), and end-to-end service (global support, calibration, customization). With 25+ years of experience, GESTER International delivers standards-aligned, high-precision testing instruments and integrated laboratory solutions, ensuring PPE meets rigorous safety requirements for medical, industrial, and chemical sectors. Explore how to choose a partner that safeguards worker safety through reliable testing.
Installation Training for the Incline Impact Tester GT-N49
Our expert team provides comprehensive on-site installation and training for the Incline Impact Tester GT-N49. This critical packaging testing equipment simulates real-world impacts during handling, transport, and stacking to evaluate product damage resistance. Learn about its key features like flexible moving plates, height adjustment, pneumatic angle control, and remote operation safety. Our service ensures proper setup, operational mastery, maintenance guidance, and troubleshooting support fo
PPE Trends: Insights from a China Top PPE Testing Machine Company
As 2026 approaches, the global PPE industry is transformed by stricter industrial safety regulations, healthcare awareness, and evolving international standards (ISO/ASTM/EN). Key trends include the rise of Smart PPE, adoption of sustainable bio-based materials, and converging global compliance requirements—demanding high-precision, automated testing equipment with data traceability. GESTER International Co., Ltd., a China top PPE testing machine company with 25+ years of expertise, addresses these challenges through modular, standards-aligned solutions (e.g., TPP Thermal Protection Tester GT-RC02A, TDM Cut Test Machine GT-KC28) and long-term partnerships with SGS, TUV, and Intertek. Offering global technical support (installation, calibration, training) and automated, multi-standard-compatible equipment, GESTER empowers PPE manufacturers to meet 2026’s rigorous safety benchmarks. This article explores PPE performance evolution, 2026 industry trends, technological testing responses, and strategic procurement tips—emphasizing how China’s leading testing machine providers bridge hardware innovation with global compliance to protect human life. For professional PPE testing solutions, visit https://www.gesterinstruments.com/.
What are The Flame Retardant Test Methods ?
Flame retardant testing evaluates materials' ability to resist ignition and slow fire spread. This guide covers key textile test methods (45°, horizontal, vertical), standards (ASTM, ISO, BS), and equipment like flammability testers for upholstery, carpets, and fabrics.
Top Features of a Certified TDM Cut Resistance Tester Supplier for Laboratory Use
The demand for precise PPE safety testing has surged with the evolution of protective gear, making TDM (Tomodynamometer) cut resistance testing a critical process for evaluating protective gloves and industrial textiles. This article details the top features of a certified TDM cut resistance tester supplier for laboratory use, including compliance with international standards (EN 388, ISO 13997, ASTM F2992), high-precision mechanical engineering, automated workflows, robust data management, and integrated safety features. It highlights GESTER International Co., Ltd.—a 20+ year experienced manufacturer with ISO 9001 certification and partnerships with SGS, Intertek, and TUV—as a leading supplier, offering the GT-KC28 TDM Cut Test Machine and comprehensive services (on-site installation, calibration, global technical support). For laboratories seeking reliable, standard-compliant testing solutions to validate PPE safety claims, this article provides actionable insights into strategic procurement. Visit https://www.gesterinstruments.com/ for more technical specifications and PPE testing solutions.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect