loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Analysis of Fabric Flame Retardant Mechanism and Method

According to the production process and the method of introducing flame retardants, the flame retardant of textiles can be roughly divided into two types: flame retardant treatment of fibers and flame retardant finishing of fabrics. 1. Flame-retardant treatment of fiber 1. Flame-retardant mechanism The flame-retardant treatment of fiber is to add a certain flame retardant to some inherently combustible filaments, such as polyester, nylon, acrylic, etc., to inhibit free radicals or It is to change the thermal decomposition process of the fiber to promote water carbonization; some are to decompose the flame retardant and release incombustible gas to cover the surface of the fiber, which acts as a barrier to air. 2. Flame-retardant treatment methods ①. Improve the thermal stability of fiber-forming polymers. Introduce aromatic rings or aromatic heterocycles into the macromolecular chains of fiber-forming polymers to increase the rigidity of the molecular chains, the density and cohesion of the large divisions, Then the high thermal stability high polymer is wet-spun into fiber; through the cross-linking reaction between the linear macromolecular chains in the fiber, it becomes a three-dimensional cross-linked structure, which prevents the carbon chain from breaking without shrinking, and is flame retardant. Sexual fiber; the fiber stays in an air oxidation furnace at 200-300°C for tens of minutes or several hours to carbonize the fiber macromolecules and become a flame-retardant fiber. ②. Raw silk flame-retardant modified copolymerization method: In the synthesis process of fiber-forming polymers, compounds containing phosphorus, halogen, sulfur and other flame-retardant elements are introduced as comonomers (reactive flame retardants) into the macromolecules In the chain, this strong flame retardant substance is added to the fiber; blending method: the same as the copolymerization method is the modification of the original filament, which is the method of adding the flame retardant to the spinning melt or spinning the flame retardant fiber; Graft modification: Use radiant heat, high-energy electron beams or chemical initiators to graft copolymerize fibers or fabrics with ethylene flame-retardant monomers, which is an effective and long-lasting flame-retardant modification method. The flame retardancy of the grafted flame-retardant modified fiber is related to the type of flame-retardant elements in the grafting monomer and the grafting position. The order of the effect of the grafting position on the flame retardant effect is: core grafting>uniform grafting>surface grafting branch. 2. Flame-retardant finishing of fabrics 1. Flame-retardant mechanism. Surface treatment of fabrics during the finishing process of textiles makes the fabrics flame-retardant. ① Covering layer theory The flame retardant can form a glass-like or stable foam cover layer at high temperature, which has the function of heat insulation and oxygen isolation, preventing combustible gas from escaping outward, and playing a flame retardant effect. ② Non-combustible gas theory The flame retardant decomposes non-combustible gas when heated, and dilutes the concentration of combustible gas from the decomposition of cellulose to below the lower combustion limit. ③, endothermic theory The flame retardant undergoes an endothermic reaction at high temperatures, reducing the temperature to prevent the spread of combustion. In addition, the heat can be quickly transferred out after the fabric is finished, so that the cellulose cannot reach the temperature of fire and combustion. ④ Chemical reaction theory (catalytic dehydration theory) The flame retardant acts as a Lewis acid and reacts with cellulose at high temperature to make the fiber catalytically dehydrated and carbonized, reducing the production of combustible gas. 3. Flame-retardant finishing method 1. The most widely used process in the flame-retardant finishing process of padding and baking method. The technological process is: padding-pre-baking-baking-post-treatment. The padding liquid is generally composed of flame retardant, catalyst, resin, wetting agent and softener, and is formulated into an aqueous solution or emulsion for finishing. 2. The impregnation-drying method is also known as the exhaustion method, which is to immerse the fabric in the flame retardant liquid for a certain period of time, and then dry and bake so that the flame retardant liquid is absorbed by the fiber polymer. 3. Organic solvent method This method uses non-water-soluble flame retardants, which has the advantage of low energy consumption during flame retardant finishing. But in actual operation, pay attention to the toxicity and flammability of the solvent. 4. Spray method Any thick curtains, large carpets and other commodities that cannot be processed by ordinary equipment can be flame-retardant finishing by hand spray method in the last process. For fabrics with patterns, tufts, and piles on the bulky surface, if the padding method is used to damage the surface pile patterns, the continuous spray method is generally used. 5. The coating method mixes the flame retardant into the resin, and the flame retardant is fixed on the fabric by the adhesion of the resin. According to different mechanical equipment, it is divided into knife coating method and casting coating method. At present, the flame-retardant method widely used in the market is mainly based on the finishing treatment of the finished product with a flame-retardant, the process is simple, and the use of fiber is relatively simple. No matter which method is used for flame retardant processing, the expected flame retardant performance must be achieved. The flame-retardant properties of flame-retardant fabrics are usually expressed by the limiting oxygen index LOI value, which represents the minimum concentration of oxygen required for the sample to maintain combustion in a mixed gas composed of oxygen (O2) and nitrogen (N2). A high LOI value means that the fabric is less flammable, because the fiber needs more oxygen to maintain combustion; on the contrary, the lower the LOI value, the less oxygen the fiber needs to burn, and the easier it is to maintain combustion. Table 1 shows the LOI values u200bu200bof common fibers. Table 1 LOI value of common fibers: natural and conventional synthetic fiber LOI flame retardant, fire-resistant synthetic fiber LOI kapok, cellulose fiber 18-20 polyvinyl chloride 35-37 wool 24-25 aramid 25-37 nylon 20-22 PBI 30-43 poly Ester 20-22 Phenolic 30-36 Polyacrylonitrile 18-20 In addition to considering flame retardancy, flame retardant fabrics must also consider the so-called second safety and third safety, that is, the toxicity and meltability of flame-retardant products. Test the impact on the human body and the environment, and whether there is any molten material dripping after burning.

GET IN TOUCH WITH Us
recommended articles
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
Cobb Test Paper Absorption Tester GT-N07 - A Comprehensive Guide
The Cobb Test Paper Absorption Tester GT-N07 is an essential instrument for evaluating the water absorption properties of paper and paperboard materials. This test, commonly known as the Cobb method, helps determine how much water paper can absorb over a specified time under controlled conditions—crucial for assessing its suitability in printing, packaging, and coating applications.
GESTER Presents Textile Testing Equipment at SAIGONTEX 2025
At SAIGONTEX 2025, GESTER showcased cutting-edge textile testing equipment, including tensile strength testers, Martindale abrasion testers, and hydrostatic head testers. Our high-precision, durable machines attracted global buyers, reinforcing GESTER’s leadership in textile quality control.
Why TDM Cut Test Machine GT-KC28 Is Needed in PPE Testing

Cut resistance is one of the most critical performance indicators in personal protective equipment (PPE) testing, directly affecting worker safety in high-risk industries such as metal processing, machinery manufacturing, and emergency rescue. The TDM Cut Test Machine GT-KC28 plays a vital role in accurately evaluating the cut resistance of PPE products, including gloves, protective clothing, footwear materials, composite materials, rubber, and industrial textiles.

By adopting high-precision force control systems, intelligent data processing, and stable transmission technology, the GT-KC28 TDM Cut Tester can accurately measure the critical cutting force of materials and ensure excellent repeatability and comparability of test results. Its user-friendly touch-screen operation, comprehensive data storage, USB data export, and built-in thermal printer greatly improve laboratory efficiency and data traceability.

The TDM Cut Test Machine GT-KC28 fully complies with major international and national standards such as ISO 13997, EN 388, ASTM F2992/F2992M, ANSI/ISEA 105, and GB 24541-2022, making it a reliable solution for PPE manufacturers, third-party testing laboratories, and research institutions. Through precise and standardized cut resistance testing, the GT-KC28 helps reduce industrial cutting injuries, supports PPE certification across global markets, and ensures that protective equipment delivers reliable safety performance in real-world applications.
Strengthening Safety Standards: The Role of a PPE Testing Equipment Supplier at A+A
The A+A Trade Fair in Düsseldorf (2026) highlights tightening global PPE safety regulations, shifting the industry from basic compliance to comprehensive performance verification. As international standards (ISO, EN, ASTM) become more granular, professional PPE testing equipment suppliers like GESTER play a pivotal role in bridging theoretical standards and practical implementation. GESTER’s high-precision, multi-standard testing tools (covering cut resistance, thermal protection, liquid penetration, etc.), backed by ISO 9001 certification and partnerships with SGS/TUV, ensure data traceability, reliability, and compliance. With 20+ years of expertise, modular innovation, and holistic service (calibration, training), the supplier supports manufacturers and laboratories in meeting stringent safety benchmarks, enabling global market entry and safeguarding worker lives. Strategic procurement of such future-ready equipment is key to long-term occupational safety success.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
Must-See Innovation: Leading Safety Helmets Tester Company at A+A International Trade Fair
The A+A International Trade Fair in Düsseldorf serves as the global hub for occupational safety and PPE innovation, where GESTER—an industry leader with over 20 years of R&D experience—shines as a top safety helmets tester company. This article explores the evolving global safety standards (ISO, ASTM, EN, ANSI) driving demand for advanced testing equipment, and highlights GESTER’s high-precision solutions for impact absorption, penetration resistance, and flame resistance testing. With ISO 9001 certification, computerized automation, real-time data capture, and a comprehensive global support framework (on-site installation, calibration, OEM/ODM services), GESTER empowers PPE manufacturers and laboratories to meet rigorous compliance requirements. The company’s presence at A+A underscores its commitment to bridging innovative PPE design with reliable safety validation, helping businesses accelerate time-to-market while ensuring worker protection worldwide.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
GESTER: China Top PPE Testing Equipment Company Leading Global Safety Standards
Since 1997, GESTER International Co., Ltd has emerged as China’s top PPE testing equipment company, with 25+ years of R&D experience in high-precision testing instruments. Serving clients in over 160 countries and partnering with global leaders like SGS, Intertek, and TUV, GESTER aligns its products with international standards (ISO, ASTM, EN, GB) to ensure reliable PPE performance. Highlighted by the GT-RC02B TPP Thermal Protection Tester—capable of simulating extreme thermal environments and calculating critical safety metrics like TPP values and escape time—and the GT-KC28 TDM Cut Test Machine, GESTER’s portfolio covers thermal protection, cut resistance, footwear testing, and more. The company offers comprehensive support, including ISO 17025/NFPA-aligned calibration, on-site installation, and staff training, empowering PPE manufacturers and testing laboratories to meet stringent global regulations, prevent workplace injuries, and accelerate market access. As a leader in global safety standards, GESTER combines technical precision, user-centric design, and lifecycle service to deliver tailored solutions for high-risk industries worldwide. Visit https://www.gesterinstruments.com/ for full product details.
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect