loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Fiber fineness measurement method based on microscopic image1

The method extracts multiple independent fiber targets from a microscopic image and calculates their fineness. The method is as follows: first, the fiber slice image is taken from the field of view of the biological microscope of the CMOS or CCD image acquisition device; then multiple independent fiber targets are separated from the image background that may contain air bubbles or impurities. A combination of differential filtering, median filtering and other filters can reduce the influence of impurities and different lighting conditions; then use the Fast Marching algorithm to locate all fibers in the segmented image; finally, calculate the fiber fineness to complete the measurement of all fiber fineness . Compared with the prior art, the invention can avoid the influence of different collection devices and illumination environments on the segmentation algorithm, and improve the stability of the fiber fineness measurement process and the accuracy of the measurement results. The most important parameter for evaluating the quality of fiber fineness, traditional methods include manual inspection, airflow method, microprojection method and other methods summarized in the production process. Among them, the 'Wool Fiber Diameter Test Method Projection Microscopy Method' (GB 10685-89) formulated with reference to the international standard IS0137-85 and the 'Fiber projection method for quantitative analysis of hemp-cotton blended products' formulated with reference to the American AATCC-20A-1995 (FZ /T 30003-2000) are the two main measurement standards. Fibers (over 100 fibers) per slide were measured using a microprojector at 500X magnification in both standards. Both the microscope method and the projector method have the problems of high labor intensity and low efficiency. The measurement operation of a sample requires hundreds of thousands of alignment/counting operations under the microscope. Repeated work can easily cause eye fatigue, and the resulting inefficiencies and human errors are inevitable. In addition, with the development of the testing-equipment' target='_blank'>textile industry, the problem of inspection standardization, unified inspection procedures and unified measurement standards has been brought about. Finally, more and more measurement work needs to be done on-site in the workshop, which also puts forward requirements on the stability of the recognition algorithm under changing lighting conditions, which cannot be satisfied by traditional methods. For this reason, the fineness measurement technology based on computer image recognition algorithm has attracted more and more attention. To date, several software and related studies have emerged for automated fiber measurement. From a large number of literature searches, investigations and trials, it is found that most of these systems and studies focus on measurements under laboratory conditions, and algorithms mainly use fixed thresholds, histogram thresholds or entropy-based segmentation methods to process grayscale images, and then Mathematical morphology is used for segmentation and boundary extraction. A typical product commonly used in the industry is the OFDA of Uster, Switzerland, which collects fiber images under a stroboscopic light source and transmits it to the system to complete automatic measurement. Some other special image processing methods, including the Hilditc boundary refinement method, or the method of using neural network recognition based on feature extraction, have also been proposed one after another. However, the practical application of these methods is not yet mature, and most methods require manual assistance in the measurement process. In addition, the preprocessing process of almost all methods is limited by the characteristics of the tested samples and the lighting environment, which makes the software system require additional equipment support in actual practice, which is not conducive to the realization of portable and industrial field applications. Therefore, the accuracy, adaptability and stability of automatic fiber measurement need to be improved. Aiming at the deficiencies of the existing fiber identification and fiber fineness measurement technologies, the invention provides a fiber fineness measurement method based on microscopic images, which can avoid the influence of different collection devices and illumination environments on the segmentation algorithm, and improve the fiber fineness measurement. Process stability and measurement accuracy. In order to achieve the above objects, the concept of the present invention is: the present invention is a significant improvement in the automatic measurement of fiber fineness in microscopic images. Constrained i^ast Marching automatic identification algorithm makes fiber identification, positioning process and fineness calculation results unaffected by changes in lighting environment to a certain extent. Compared with the existing corresponding technology, the technology improves the recognition stability under variable illumination environment, is suitable for CCD and CMOS image acquisition equipment, optimizes the speed of algorithm implementation, and meets the requirements of accuracy. According to the above-mentioned inventive concept, the present invention adopts the following technical solutions:—A fiber fineness measurement method based on microscopic images, which is characterized in that a plurality of independent fiber targets are extracted from the microscopic images with air bubbles or impurities, and the fineness measurement for all fibers is completed; the specific measurement process includes the following

It has become necessary for GESTER International Co.,Limited to continually cultivate, develop and update their skills to work successfully alongside high-tech.

Check out GESTER Instruments for optimal quality products, and get your textile testing equipment problem fixed. Send us an enquiry or make a call if you are interested.

More than half of customers said they have faith with GESTER International Co.,Limited and textile testing equipment.

Through our distribution and marketing competencies, GESTER International Co.,Limited provides creative, customized, solutions for our customers. As a result, we achieve superior profit growth as the textile testing equipment company of choice.

textile testing equipment also offers several other tensile tester manufacturers that could potentially be useful for manufacturers.

GET IN TOUCH WITH Us
recommended articles
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
What Are the Types of Color Fastness Testing for Fabrics?
Color fastness testing evaluates how well fabrics resist fading or bleeding under conditions like washing, rubbing, light exposure, and perspiration. Key tests include rubbing fastness, washing fastness, light fastness, perspiration fastness, and sublimation fastness. These tests ensure textiles maintain color integrity, prevent health risks, and meet quality standards. Learn about different testing methods and equipment used in the textile industry.
Why GESTER Ranks as a Leading TPP Thermal Protective Performance Tester Exporter
As a trusted leading TPP Thermal Protective Performance Tester exporter, GESTER International Co., Ltd. brings 25+ years of R&D and manufacturing expertise to PPE safety testing. Our flagship GT-RC02 series TPP testers feature advanced dual-source thermal simulation, high-sensitivity sensors, and full digital automation—delivering precise, repeatable data to evaluate thermal protection for firefighter and industrial protective clothing. Fully compliant with global standards (NFPA 1971, EN 469, ISO), GESTER’s equipment is trusted by SGS, Intertek, and top testing institutes worldwide. Backed by ISO 9001 certification, global service in 160+ countries, and professional calibration support, we empower manufacturers and labs to meet stringent safety regulations and ensure life-saving thermal protection. Discover tailored TPP testing solutions for PPE excellence at GESTER.
Heat Contact Machine GT-C101-The Ultimate Selection Guide

The Heat Contact Machine GT-C101 is a specialized testing instrument designed for evaluating the heat resistance and thermal protective performance of gloves, protective clothing, and other heat-resistant materials used in high-temperature environments. In industries such as smelting, casting, welding, and glass manufacturing, workers are frequently exposed to intense heat, making accurate testing of contact heat resistance essential for ensuring safety and compliance.

GT-C101 simulates real working conditions by measuring heat transfer delay and thermal transmission under instant contact with high-temperature surfaces. Fully compliant with EN 407, EN 702, and ISO 12127-1 standards, this machine provides precise, repeatable data for manufacturers, laboratories, and research institutions. With high-temperature capability up to 500°C, advanced calorimetry, digital monitoring, and adjustable contact speed, the Heat Contact Machine GT-C101 is an indispensable tool for developing and certifying next-generation PPE and heat-insulation materials.
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
Shoes & Leather - Guangzhou 2025: GESTER Showcased Footwear testing Equipment on Site
GESTER impressed at Shoes & Leather Guangzhou 2025 by exhibiting high-precision footwear testing equipment like the DIN Abrasion Tester and Bally Flexing Tester, essential for quality control in shoe production. The event fostered industry collaboration, with GESTER attracting global buyers and strengthening partnerships.
Bally Leather Flexing Tester GT-KC10A Assembly Guide
This comprehensive guide provides detailed instructions for the proper assembly, calibration, and operation of the Bally Leather Flexing Tester GT-KC10A. Essential for quality control labs, it ensures accurate testing of flex resistance in leather, coated fabrics, and textiles used in footwear uppers, helping to prevent material failure.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
A Complete Guide to Martindale Testing by the Best Martindale Abrasion Tester Supplier
Durability is critical for textiles and footwear, and Martindale testing is the gold standard for measuring abrasion resistance and pilling performance. This guide dives into Martindale testing’s core mechanics (Lissajous figure multi-directional friction), strategies to boost testing accuracy (sample clamping, load calibration, abrasive standardization), and compliance with international standards (ISO 12947, ASTM D4966, EN). As a top Martindale abrasion tester supplier with 25+ years of expertise, GESTER International delivers high-precision instruments (Martindale Abrasion Tester GT-C13B, etc.) certified to ISO 9001 and trusted by SGS, Bureau Veritas, and other global testing institutes. Beyond machinery, GESTER offers global technical support, on-site installation, and calibration services. The guide also includes a procurement framework to help labs select tailored Martindale testing solutions. For reliable, standard-compliant durability testing, GESTER is your trusted partner.
Looking for a Laboratory Protective Clothing Tester Supplier? Key Criteria to Consider
As global demand for high-performance PPE surges, selecting a qualified laboratory protective clothing tester supplier becomes critical for manufacturers and regulators. This article outlines core selection criteria: compliance with international standards (ISO, EN, ASTM), comprehensive protective gear tests (particle resistance, fluid barrier, thermal resistance, electrostatic safety), manufacturer qualifications (ISO 9001 certification, partnerships with SGS/TUV/Intertek), equipment precision (automation, modular design, data traceability), and end-to-end service (global support, calibration, customization). With 25+ years of experience, GESTER International delivers standards-aligned, high-precision testing instruments and integrated laboratory solutions, ensuring PPE meets rigorous safety requirements for medical, industrial, and chemical sectors. Explore how to choose a partner that safeguards worker safety through reliable testing.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect