loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Graphene + quantum dots, new hybrid materials will help next-generation display research

Researchers at the Indian Institute of Science (IISc) have created a novel hybrid of graphene and quantum dots, a breakthrough that may inspire research into the next generation of efficient and controllable displays and LED displays. Quantum dots are nanoscale semiconductor crystals that have the potential to revolutionize a variety of technologies, including photovoltaics, medical imaging, and quantum computing. Quantum dots can absorb ultraviolet light to produce clear and bright colors, which are especially suitable for the production of next-generation TV sets, smartphones and LED displays. However, they are not good electrical conductors and are therefore inefficient when used alone on equipment. To improve efficiency, the researchers tried combining them with graphene, an excellent conductor. The added graphene compensates for the product's ability to conduct electricity, even after manufacturing or turning the device on and off at will. While this combination would work well for photodetectors and sensors, it's practically useless for displays and LED displays because the quantum dots lose their ability to emit light when fused with graphene. By modifying some experimental conditions, IISc scientists have found a way to eliminate this effect and develop a highly tunable hybrid material. The results published by ACS Photonics open the door to a new generation of state-of-the-art displays and LEDs. Quantum dots are very small particles that perform far better than conventional semiconductors. When activated by UV light, they can produce different colors of visible light depending on their size. For example, small dots produce blue light, while larger ones emit red light. They absorb light well, but they are not good conductors of electricity, so devices based on quantum dots that convert light into electricity are not very efficient. In contrast, graphene is almost transparent to light, but it is an excellent electrical conductor. When the two are combined, graphene can theoretically quickly draw the energy absorbed by the quantum dots away from it, reducing energy loss and converting it into an electrical signal. This makes it possible to create extremely efficient devices such as photodetectors. Jaydeep Kumar Basu, professor of physics at IISc and first author of the paper, said:“Both are the best.”In the above case, the transfer of energy to graphene leaves the quantum dots with little energy left to emit light, making them unusable in displays or LEDs. Basu said:“Due to these effects, the application of these hybrid materials has not yet begun, and in the case of quantum dots, graphene acts like a sponge, not allowing any energy to be emitted.”Basu's team attempted to overcome this by exploiting a reaction known as superradiance“quench”effect. When a single atom or emitter (such as a quantum dot) in a layer is excited, each emits light independently. Under certain conditions, all atoms or emitters can cooperate to emit light. This produces a very bright light whose intensity is significantly greater than the sum of the emissions of the individual ones. In previous studies, Basu's team produced superradiance on a thin layer of quantum dots by combining with metal nanoparticles under certain experimental conditions. They reproduced these conditions in the new quantum dot-graphene hybrid material to generate ultra-strong radiation strong enough to counteract quenching. Using data models, they found that this happens when individual quantum dots are 5nm or less apart, and the quantum dot layer and graphene are separated by a distance of 3nm or less. Basu said:“We are the first to be able to eliminate this”sponge“effect and keep the signal source active. When superradiance dominated, the light emitted in the presence of graphene was three times as intense as what could be achieved with quantum dots alone. Basu said:“The advantage of graphene is that one can also tune it electronically. The intensity can be changed by simply changing the voltage or current.”The study also opens up new avenues for understanding how light and matter interact at the nanoscale, the authors say. The article comes from the phys website. The original title is Novel hybrid material may inspire highly efficient next-gen displays, which is compiled and organized by Materials Science and Technology Online.

GET IN TOUCH WITH Us
recommended articles
Bally Leather Flexing Tester GT-KC10A Assembly Guide
This comprehensive guide provides detailed instructions for the proper assembly, calibration, and operation of the Bally Leather Flexing Tester GT-KC10A. Essential for quality control labs, it ensures accurate testing of flex resistance in leather, coated fabrics, and textiles used in footwear uppers, helping to prevent material failure.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Everything You Need to Know About the Hydrostatic Head Tester
A hydrostatic head tester evaluates the waterproof capability of textiles, automotive interiors, and industrial materials. This guide covers its working principle, core components, global test standards (ISO, AATCC, EN), and a detailed testing procedure to ensure accurate results.
Sweating Guarded Hotplate GT-C98 Guide: Find the Right Testing Machine for Your Needs
The Sweating Guarded Hotplate GT-C98 is a professional instrument designed to evaluate the thermal resistance (Rct) and water-vapor resistance (Ret) of textiles and related materials. By simulating human skin heat dissipation and sweating under controlled conditions, it provides accurate and repeatable data for comfort and protective performance analysis. This guide introduces the testing principle, applicable international standards, industry applications, and key technical features to help users identify the right testing machine for product development, quality control, and research.
Everything You Need to Know About Programmable Temperature Humidity Chamber
A Programmable Temperature Humidity Chamber simulates environmental conditions to test product durability, stability (like shelf life & ageing), and performance across materials, electronics, automotive parts, food, and pharmaceuticals. This guide explains its five core systems (Control, Refrigeration, Heating, Humidity, Air Circulation) and their functions for precise testing.
Understanding UV Aging Chambers: Applications, Features, and Advantages
The GT-C29 UV Aging Chamber simulates years of environmental damage in days using UVA-340 lamps, rain, and temperature cycles. Ideal for paints, plastics, automotive, and wood industries, it offers high accuracy, cost efficiency, and safety. Learn how it accelerates R&D and quality control.
How to Find a Professional Safety Glove Testing Machine Manufacturer with CE Certification?
With the global PPE market’s rapid growth, choosing a professional CE-certified safety glove testing machine manufacturer is critical for data integrity and international compliance. This article explains why CE certification is non-negotiable (ensuring EU safety/quality standards), outlines essential test items (abrasion, cut, thermal protection per EN 388/EN 407), highlights core instruments (GESTER GT-KC28 TDM Cut Tester, GT-KC29 Cutting Tester, GT-C101 Heat Contact Machine), and details how to evaluate suppliers (20+ years of experience, partnerships with SGS/Bureau Veritas, ISO 9001 certification, after-sales support). It also covers the benefits of OEM/ODM capabilities for customized solutions. Ultimately, partnering with trusted manufacturers like GESTER ensures high-precision, compliant testing to protect workers and meet global market requirements.
Why is TPP Testing Important for Firefighter Protective Clothing
TPP testing objectively evaluates the thermal protective performance of firefighter protective clothing under extreme radiant and convective heat. This article explains TPP testing principles, its role in meeting NFPA/ISO standards, and how advanced equipment like the GT-RC02 TPP tester helps ensure clothing reliability and firefighter safety.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect