loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Scientists find non-toxic infrared semiconductor material

Semiconductor materials are a class of semiconductor materials with semiconductor properties (conductivity between conductors and insulators, resistivity is about 1mΩ·cm~1GΩ·cm range), electronic materials that can be used to make semiconductor devices and integrated circuits, are more important. However, many existing infrared semiconductors contain toxic chemical elements, such as cadmium and tellurium. In a new study, scientists have discovered that the compound Ca3SiO, a direct-bandgap semiconductor composed of calcium, silicon and oxygen, is inexpensive to produce, non-toxic, and has the potential to be used in infrared LEDs and infrared detector elements. It is reported that infrared electromagnetic waves have many uses, such as optical fiber communication, photovoltaic power generation and night vision equipment. However, semiconductors capable of emitting infrared radiation (ie, direct transition semiconductors such as cadmium mercury telluride and gallium arsenide) contain toxic compounds. Infrared semiconductors that do not contain toxic chemical elements generally cannot emit infrared radiation (ie, indirect bandgap semiconductors). Traditionally, the semiconducting properties of materials, such as the energy band gap, are controlled by combining 2 chemical elements (such as III and V or II and VI) located to the left and right of group IV elements. In this traditional strategy, by using heavier elements, the energy band gap becomes narrower: this idea has led to the development of toxic direct transition semiconductors, such as cadmium mercury telluride and gallium arsenide. To discover infrared semiconductors free of toxic elements, the research team took an unconventional approach: They focused on the crystal structure of the silicon atom as a tetravalent anion rather than the normal tetravalent cation state. The group selected oxysilicides (such as Ca3SiO) and oxygermanides with anti-perovskite crystal structures, synthesized them, evaluated their physical properties and performed theoretical calculations. The results show that these compounds have great potential as direct transition semiconductors. These compounds with small direct band gaps may be efficient at absorbing, detecting and emitting long infrared wavelengths, even when they are processed into thin films, making them very promising near-infrared semiconductor materials for infrared sources and detection device.

GET IN TOUCH WITH Us
recommended articles
What Are the Test Methods for Fabric Bursting Strength?
Fabric bursting strength measures resistance to rupture under concentrated load. Three primary test methods are used:

Ball Burst Method (ASTM D3787): Steel ball penetration for textiles/films using testers like GT-C02-2.

Hydraulic Method (ISO 13938.1): Fluid pressure on rubber diaphragm for industrial fabrics via GT-C12A.

Pneumatic Method (ISO 13938.2): Compressed air for breathable materials tested with GT-C12B.
Results are influenced by raw materials, yarn properties,
Sweating Guarded Hotplate GT-C98 Guide: Find the Right Testing Machine for Your Needs
The Sweating Guarded Hotplate GT-C98 is a professional instrument designed to evaluate the thermal resistance (Rct) and water-vapor resistance (Ret) of textiles and related materials. By simulating human skin heat dissipation and sweating under controlled conditions, it provides accurate and repeatable data for comfort and protective performance analysis. This guide introduces the testing principle, applicable international standards, industry applications, and key technical features to help users identify the right testing machine for product development, quality control, and research.
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
Cobb Test Paper Absorption Tester GT-N07 - A Comprehensive Guide
The Cobb Test Paper Absorption Tester GT-N07 is an essential instrument for evaluating the water absorption properties of paper and paperboard materials. This test, commonly known as the Cobb method, helps determine how much water paper can absorb over a specified time under controlled conditions—crucial for assessing its suitability in printing, packaging, and coating applications.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
According to ASTM D642 Standard: Detailed Box Compression Strength Tester GT-N02A
The ASTM D642 standard defines the test method for determining the compressive resistance of shipping containers, like corrugated boxes, when faced with static compressive forces. This article details the test procedure and introduces the GESTER GT-N02A and GT-N02B Box Compression Testers, which are fully compliant with ASTM D642, ISO 12048, and TAPPI T804. These versatile machines perform destructive strength tests, constant value tests, and simulated long-term stacking tests to ensure your pac
Why TDM Cut Test Machine GT-KC28 Is Needed in PPE Testing

Cut resistance is one of the most critical performance indicators in personal protective equipment (PPE) testing, directly affecting worker safety in high-risk industries such as metal processing, machinery manufacturing, and emergency rescue. The TDM Cut Test Machine GT-KC28 plays a vital role in accurately evaluating the cut resistance of PPE products, including gloves, protective clothing, footwear materials, composite materials, rubber, and industrial textiles.

By adopting high-precision force control systems, intelligent data processing, and stable transmission technology, the GT-KC28 TDM Cut Tester can accurately measure the critical cutting force of materials and ensure excellent repeatability and comparability of test results. Its user-friendly touch-screen operation, comprehensive data storage, USB data export, and built-in thermal printer greatly improve laboratory efficiency and data traceability.

The TDM Cut Test Machine GT-KC28 fully complies with major international and national standards such as ISO 13997, EN 388, ASTM F2992/F2992M, ANSI/ISEA 105, and GB 24541-2022, making it a reliable solution for PPE manufacturers, third-party testing laboratories, and research institutions. Through precise and standardized cut resistance testing, the GT-KC28 helps reduce industrial cutting injuries, supports PPE certification across global markets, and ensures that protective equipment delivers reliable safety performance in real-world applications.
Top Features of a Certified TDM Cut Resistance Tester Supplier for Laboratory Use
The demand for precise PPE safety testing has surged with the evolution of protective gear, making TDM (Tomodynamometer) cut resistance testing a critical process for evaluating protective gloves and industrial textiles. This article details the top features of a certified TDM cut resistance tester supplier for laboratory use, including compliance with international standards (EN 388, ISO 13997, ASTM F2992), high-precision mechanical engineering, automated workflows, robust data management, and integrated safety features. It highlights GESTER International Co., Ltd.—a 20+ year experienced manufacturer with ISO 9001 certification and partnerships with SGS, Intertek, and TUV—as a leading supplier, offering the GT-KC28 TDM Cut Test Machine and comprehensive services (on-site installation, calibration, global technical support). For laboratories seeking reliable, standard-compliant testing solutions to validate PPE safety claims, this article provides actionable insights into strategic procurement. Visit https://www.gesterinstruments.com/ for more technical specifications and PPE testing solutions.
How to Choose Light Fastness Tester: Water-Cooled and Air-Cooled
Choosing between water-cooled and air-cooled light fastness testers depends on precision needs, budget, and application. Water-cooled testers (like GESTER GT-3000) offer superior spectral accuracy and stability for rigorous standards (e.g., automotive, coatings). Air-cooled models (like GESTER GT-D02A-1) provide energy efficiency and easier installation for routine QC. This guide compares cooling methods, features, and applications to help you select the optimal tester.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect