loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Unstable metals provide a new way to study superconductivity

The Ames Laboratory of the U.S. Department of Energy discovered and described a unique disordered electron spin state that exists in metals. This state may provide a unique way to find and study unstable magnets. Condensed matter physicists use the term 'unstable' to describe a magnet whose spin is inconsistent with a stable magnetic order. These ultra-unstable magnet materials, called spin liquids, still have disordered magnetism even at extremely low temperatures, and their unique properties are of great help to the development of quantum computing and high-temperature superconductivity. In order to find this very unstable magnetic state, the material studied is usually an insulator. However, researchers in the Ames laboratory found this unstable state in a metal material with a molecular formula of CaCo1.86As2. Rob McQueeney, a scientist in the Ames Laboratory, said: 'This unstable system with an indeterminate magnetic state is difficult to find at the beginning, but it is even more difficult to find in metal.' In an insulated magnet, it leads to an unstable state of self. The interaction between spins is determined by the crystal structure of the crystal lattice, and this interaction is relatively constant. The discovery of this nearly unstable metal provides a new way to repair the magnetic interaction to achieve a completely unstable state. 'Here, we have a small handle that can be adjusted. We know that some of the interactions that cause instability are carried out by conducting electrons, and we can precisely adjust these interactions, maybe you will get a superconductor, maybe you will get Some other new quantum states. We have many choices' article from rdmag, the original title is'Perfectly Frustrated' Metal Provides Possible Path to Superconductivity, compiled by Material Science and Technology Online.

GET IN TOUCH WITH Us
recommended articles
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
Heat Contact Machine GT-C101-The Ultimate Selection Guide

The Heat Contact Machine GT-C101 is a specialized testing instrument designed for evaluating the heat resistance and thermal protective performance of gloves, protective clothing, and other heat-resistant materials used in high-temperature environments. In industries such as smelting, casting, welding, and glass manufacturing, workers are frequently exposed to intense heat, making accurate testing of contact heat resistance essential for ensuring safety and compliance.

GT-C101 simulates real working conditions by measuring heat transfer delay and thermal transmission under instant contact with high-temperature surfaces. Fully compliant with EN 407, EN 702, and ISO 12127-1 standards, this machine provides precise, repeatable data for manufacturers, laboratories, and research institutions. With high-temperature capability up to 500°C, advanced calorimetry, digital monitoring, and adjustable contact speed, the Heat Contact Machine GT-C101 is an indispensable tool for developing and certifying next-generation PPE and heat-insulation materials.
How to Improve Plastic Film Drop Dart Impact Strength
Discover actionable strategies to enhance the drop dart impact strength of plastic films for packaging, agriculture, and construction. Learn how material selection, additives, processing, and rigorous ASTM/ISO drop dart impact testing ensure product durability and prevent failure.
How to Improve Textile Quality with the Fabric Bursting Strength Tester
Ensure textile durability with the GT-C12A Fabric Bursting Strength Tester, a pneumatic testing device for woven/knitted fabrics, nonwovens, paper & leather. Compliant with ISO, ASTM, & JIS standards, it offers precise digital readings, automatic sensing, and intelligent software for quality control. Discover how this tester improves material performance & prevents defects in production.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Everything You Need to Know About the Hydrostatic Head Tester
A hydrostatic head tester evaluates the waterproof capability of textiles, automotive interiors, and industrial materials. This guide covers its working principle, core components, global test standards (ISO, AATCC, EN), and a detailed testing procedure to ensure accurate results.
Why GESTER Ranks as a Leading TPP Thermal Protective Performance Tester Exporter
As a trusted leading TPP Thermal Protective Performance Tester exporter, GESTER International Co., Ltd. brings 25+ years of R&D and manufacturing expertise to PPE safety testing. Our flagship GT-RC02 series TPP testers feature advanced dual-source thermal simulation, high-sensitivity sensors, and full digital automation—delivering precise, repeatable data to evaluate thermal protection for firefighter and industrial protective clothing. Fully compliant with global standards (NFPA 1971, EN 469, ISO), GESTER’s equipment is trusted by SGS, Intertek, and top testing institutes worldwide. Backed by ISO 9001 certification, global service in 160+ countries, and professional calibration support, we empower manufacturers and labs to meet stringent safety regulations and ensure life-saving thermal protection. Discover tailored TPP testing solutions for PPE excellence at GESTER.
What is the Safety Glove & Shoe Upper Cutting Tester GT-KC29
The Safety Glove & Shoe Upper Cutting Tester GT-KC29 is a high-precision testing instrument developed to measure the cut resistance performance of safety gloves and footwear uppers. In industrial and construction environments where sharp tools and metal edges pose significant injury risks, the GT-KC29 provides a reliable evaluation method by simulating real cutting motion. This tester meets EN 388 section 6.2, ISO 20344:2021 section 5.23, GB/T 20991 section 6.14, and other global standards, making it essential for PPE manufacturers, testing laboratories, and quality control departments. With automated operation, high repeatability, and multi-standard compliance, it helps companies improve product safety levels, enhance global competitiveness, and ensure superior protection for end users.
How to Test Firefighter Turnout Gear Thermal Protection?
Firefighter turnout gear plays a critical role in protecting firefighters operating in extreme environments involving high temperatures, flames, radiant heat, and convective heat. Its thermal protective performance directly affects firefighter safety and survival during fireground operations. This article explains how to test firefighter turnout gear thermal protection through Thermal Protective Performance (TPP) testing. It introduces the scientific principle based on the Stoll curve, outlines key influencing factors such as heat flux intensity and exposure time, and reviews internationally recognized standards including NFPA 1971 and ISO 17492. The article also highlights the testing advantages of the GT-RC02 TPP Thermal Protection Tester, which provides accurate, stable, and standards-compliant evaluation of flame-retardant protective clothing materials under combined radiant and convective heat exposure.
ISO 17694 / ISO 5402-1: Footwear Flexing Resistance Test Methods
Footwear soles and uppers endure thousands of flex cycles during use, risking premature cracking, delamination, or chipping if material resistance is inadequate. This technical analysis details two critical international standards:

1. ISO 5402-1: Specifies the flexometer method for testing leather flex resistance under repeated bending.

2. ISO 17694: Defines test methods for footwear upper and lining flex resistance, simulating real-world bending stress to assess long-term durability.

C
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect