loading

Gester Instruments | Professional Textile Testing Equipment Manufacturers Since 1997


Test Standard
Test Standard

Why do polymer materials have flame retardant properties? Flame retardant mechanism of polymer materials

Generally speaking, flame retardant polymer materials can be achieved by several types of flame retardant mechanisms, such as gas phase flame retardant, condensed phase flame retardant, and interrupted heat exchange flame retardant. By inhibiting the free radicals that promote the growth of the combustion reaction chain in the gas phase, it is a gas phase flame retardant; The flame retardant that takes part of the heat generated by the combustion of the polymer away to achieve flame retardant belongs to the type of interrupted heat exchange mechanism. However, since both combustion and flame retardant are very complex processes involving many influencing factors and constraints, it is often one-sided and difficult to strictly classify the flame retardant mechanism of a flame retardant system into a certain one in isolation. In fact, many flame retardant systems work simultaneously with multiple flame retardant mechanisms. 1. Mechanism of gas phase flame retardant The so-called gas phase flame retardant is to improve the flame retardant performance of the material by preventing the combustion of the combustible gas product decomposed by the polymer or preventing the flame reaction. Usually can be achieved by the following means. ①Use a flame retardant that can release reactive gas compounds under the action of heat. Such reactive compounds typically act on free radicals that affect flame formation or growth. The halogen-antimony flame retardant system commonly used in industry is one of the typical examples that act in this way. ②Adopt additives that can form fine smoke particles during the combustion process of the polymer. Such smoke particles can act in the growth of a heterogeneous flame, mainly catalyzing the binding and termination of free radicals in combustion. ③Select additives that can release a large amount of inert gas during decomposition. The presence of a large amount of inert gas can dilute the concentration of flammable gas produced by the decomposition of the polymer, and at the same time can reduce the temperature of the decomposition product of the polymer, so the obtained gas mixture will not make the flame grow when it encounters the action of the surrounding oxidant. . ④ In some cases, the added additives do not undergo chemical changes when heated, but only release heavy vapors. This vapor covers the surface of the combustible gas decomposed by the high polymer, affecting its normal exchange with air and oxygen, thus suffocating the flame. 2. Condensed phase flame retardant mechanism Condensed phase flame retardant mainly refers to preventing the thermal decomposition of high polymers and the release of flammable gases. It can be achieved by the following methods. ①Add additives that can prevent the thermal decomposition of the polymer from generating free radical chains in the solid phase. ②Add various inorganic fillers. Since inorganic fillers have a large specific heat capacity, they can play the role of heat storage; at the same time, because they are non-thermal insulators, they can also play a role in heat conduction. It is because of their existence that these effects prevent the rapid rise of the surface temperature of the polymer, so that it cannot reach the decomposition temperature at which thermal decomposition occurs and flammable gas occurs. ③ Add flame retardants that can decompose after endothermic, such as aluminum hydroxide, etc. Since this flame retardant has the characteristics of endothermic decomposition, it can effectively keep the polymer at a lower temperature without reaching the level of thermal decomposition. ④ Apply a non-flammable protective coating on the surface of the high polymer material, which can insulate the high polymer from heat and oxygen, and prevent the flammable gas generated by the decomposition of the high polymer from escaping into the combustion gas phase. Among the application examples, intumescent fire retardant coatings are typical. After being exposed to fire, it can form a carbonized protective layer with a thickness that is dozens or even hundreds of times greater than itself, thus playing the role of oxygen insulation, heat insulation and protection of the substrate. The flame retardant mechanism of the new intumescent flame retardant is similar to this. 3. Interruption of heat exchange flame retardant mechanism As mentioned above, an important condition for maintaining continuous combustion is that part of the combustion heat must be fed back to the polymer, so that the polymer can be continuously decomposed by heat, thereby providing the necessary conditions for maintaining combustion. fuel source. Therefore, if a certain flame retardant is added, the burning heat can be removed so that it does not return to the polymer, and the burning can be interrupted. In actual production, this flame retardant method has been applied. For example, in liquid or low molecular weight chlorinated paraffin or high polymer flame retardant with antimony trioxide in combination, because the flame retardant can promote the depolymerization or decomposition of the high polymer by heat, it is conducive to the occurrence of high polymer Heating and melting; when the burning polymer droplets drip from the body, a large amount of heat is taken away, reducing the heat fed back to the base material, thereby delaying the combustion and eventually interrupting the combustion.

GET IN TOUCH WITH Us
recommended articles
GESTER Presents Textile Testing Equipment at SAIGONTEX 2025
At SAIGONTEX 2025, GESTER showcased cutting-edge textile testing equipment, including tensile strength testers, Martindale abrasion testers, and hydrostatic head testers. Our high-precision, durable machines attracted global buyers, reinforcing GESTER’s leadership in textile quality control.
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
Shoes & Leather - Guangzhou 2025: GESTER Showcased Footwear testing Equipment on Site
GESTER impressed at Shoes & Leather Guangzhou 2025 by exhibiting high-precision footwear testing equipment like the DIN Abrasion Tester and Bally Flexing Tester, essential for quality control in shoe production. The event fostered industry collaboration, with GESTER attracting global buyers and strengthening partnerships.
Water Resistance Testing Standards and Methods
Textile water resistance testing evaluates fabrics through three primary methods: hydrostatic pressure (measuring water penetration resistance), spray rating (assessing surface water repellency), and water repellency tests (quantifying water absorption). Hydrostatic pressure testing is critical for high-performance applications like outdoor apparel and diving gear, while spray rating evaluates surface staining for rainwear. Water repellency tests, such as the Bundesmann method, determine overall
Understanding the Operation of Crush Tester
Crush Testers, such as the GT-N09, are essential tools in the packaging industry for evaluating the compressive strength of materials like cardboard and corrugated boards. This guide provides a detailed overview of testing methods like Edge Crush Test (ECT), Ring Crush Test (RCT), Flat Crush Test (FCT), Concora Medium Test (CMT), and Pin Adhesion Test (PAT). It also includes a step-by-step operation procedure for the GT-N09 Crush Tester and key precautions to ensure accurate and reliable test re
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
An Introduction to MAESER Water Penetration Testing Machine: Principle and Applications
The MAESER Water Penetration Testing Machine is an advanced device designed to evaluate the water resistance of flexible materials such as leather, artificial leather, and fabrics. This article explains the working principle of the machine, its applications in industries like footwear, and maintenance practices to ensure long-lasting and accurate results in water penetration testing.
What Are the Types of Color Fastness Testing for Fabrics?
Color fastness testing evaluates how well fabrics resist fading or bleeding under conditions like washing, rubbing, light exposure, and perspiration. Key tests include rubbing fastness, washing fastness, light fastness, perspiration fastness, and sublimation fastness. These tests ensure textiles maintain color integrity, prevent health risks, and meet quality standards. Learn about different testing methods and equipment used in the textile industry.
An Introduction to Footwear Electric Shock Resistant Tester GT-KB42
The GT-KB42 Footwear Electric Shock Resistant Tester by GESTER assesses the dielectric strength of safety shoes, boots, and insulating footwear to prevent workplace electrical hazards. Complying with ANSI, CSA, GB, and ASTM standards, it features precision voltage control, real-time leakage monitoring, and multi-standard compatibility—ideal for power utilities, construction, and industrial safety applications.
A Comprehensive Guide to Safety Shoes Compression and Puncture Tester GT-KB12A
The GT-KB12A Safety Shoe Compression and Puncture Tester evaluates footwear against EN ISO 20344 standards, ensuring protection against heavy impacts and sharp objects. This guide covers its working principle, testing steps, and compliance importance for industrial safety.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect