loading

Gester Instruments | Professional Textile Testing Equipment Manufacturers Since 1997


Semiconductor technology reduces power battery fire risk

When a lithium-ion battery is charged, lithium ions are transported to the negative electrode and deposited on the surface of the battery in the form of lithium metal, thereby forming dendritic protrusions. These lithium dendrites can cause uncontrollable volume fluctuations and lead to reactions between solid electrodes and liquid electrolytes, which can cause fires and severely affect battery performance. To effectively solve this problem, a research team led by Dr. Joong Kee Lee of the Energy Storage Research Center of the Korea Institute of Science and Technology (KIST) successfully suppressed dendrite growth by forming a protective semiconductor passivation layer on the surface of the lithium electrode. The crystals have multiple branches and can cause fires in batteries in electric vehicles. It is understood that in order to prevent dendrite formation, the research team exposed the plasma to fullerene (C60). Fullerene is a highly electronically conductive semiconductor material that enables the formation of a semiconducting passivating carbonaceous layer between the lithium electrode and the electrolyte. The semiconducting passivation carbonaceous layer allows lithium ions to pass through, while blocking electrons through the resulting Schottky barrier, and preventing electrons and ions from interacting on and inside the electrode surface, avoiding the formation of lithium crystals and dendrite growth. Dr. Joong Kee Lee said:“The dendrite growth on the lithium electrode is effectively inhibited, which helps to improve the safety of the battery. The research proposes techniques for developing highly safe lithium metal electrodes, providing a blueprint for developing next-generation batteries without fire risks.”The next goal of the research team is to improve the commercial viability of the technology:“Replacing fullerenes with cheaper materials to make semiconducting passivating carbonaceous layers makes them more cost-effective.”

GET IN TOUCH WITH Us
recommended articles
Five Key Highlights of the GT-C75 Fabric Sample Cutter
In textile testing, precise sample cutting is essential for reliable results. The GESTER GT-C75 Fabric Sample Cutter stands out with its exceptional cutting accuracy, easy-to-use design, durability, versatility for various materials, and low maintenance requirements. This article provides an in-depth look at how these five key features make the GT-C75 an invaluable asset for textile laboratories and production lines aiming to improve testing efficiency and data accuracy.
Understanding UV Aging Chambers: Applications, Features, and Advantages
The GT-C29 UV Aging Chamber simulates years of environmental damage in days using UVA-340 lamps, rain, and temperature cycles. Ideal for paints, plastics, automotive, and wood industries, it offers high accuracy, cost efficiency, and safety. Learn how it accelerates R&D and quality control.
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
What are The Flame Retardant Test Methods ?
Flame retardant testing evaluates materials' ability to resist ignition and slow fire spread. This guide covers key textile test methods (45°, horizontal, vertical), standards (ASTM, ISO, BS), and equipment like flammability testers for upholstery, carpets, and fabrics.
How to Conduct Whole Shoes Flexing Tester: Step-by-Step Process
This article explores the Whole Shoes Flexing Tester, focusing on its operation, applications, and features. It offers a detailed, step-by-step guide to help you conduct shoe flexing tests efficiently while improving the durability and performance of footwear products.
Everything You Need to Know About the Hydrostatic Head Tester
A hydrostatic head tester evaluates the waterproof capability of textiles, automotive interiors, and industrial materials. This guide covers its working principle, core components, global test standards (ISO, AATCC, EN), and a detailed testing procedure to ensure accurate results.
Essential Guide to Horizontal Flammability Tester Maintenance for Optimal Performance
This guide covers essential maintenance tips for the Horizontal Flammability Tester, including daily, weekly, and monthly checklists to ensure optimal performance and safety compliance. It also provides troubleshooting solutions for common issues, storage guidelines, and when to seek professional servicing. Maintaining Horizontal Flammability Tester reduces costs, enhances accuracy, and ensures compliance with industry standards like ISO 3795.
Brightness Tester for Paper: Applications, Function, and Standards
The Brightness Tester for Paper is a precision instrument designed to measure the brightness or whiteness of materials, ensuring quality and consistency across industries like papermaking, textiles, chemicals, and food production. This article explores its applications, key functions, and compliance with industry standards such as ISO and GB/T. Learn why this device is essential for maintaining high-quality standards in material production and inspection.
A Comprehensive Guide to Safety Shoes Compression and Puncture Tester GT-KB12A
The GT-KB12A Safety Shoe Compression and Puncture Tester evaluates footwear against EN ISO 20344 standards, ensuring protection against heavy impacts and sharp objects. This guide covers its working principle, testing steps, and compliance importance for industrial safety.
What Are the Test Methods for Fabric Bursting Strength?
Fabric bursting strength measures resistance to rupture under concentrated load. Three primary test methods are used:

Ball Burst Method (ASTM D3787): Steel ball penetration for textiles/films using testers like GT-C02-2.

Hydraulic Method (ISO 13938.1): Fluid pressure on rubber diaphragm for industrial fabrics via GT-C12A.

Pneumatic Method (ISO 13938.2): Compressed air for breathable materials tested with GT-C12B.
Results are influenced by raw materials, yarn properties,
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect