loading

Gester Instruments | Professional Textile Testing Equipment Manufacturers Since 1997


Products
Products

Analysis of several methods commonly used in textile instrument maintenance1

Textile instruments, as a type of instrument often tried by textile enterprises, are frequently used in daily production. Textile instruments will inevitably lead to wear and tear during the trial process. How should people face and maintain some common faults? ? Returning to the factory for maintenance will waste a lot of time for the company. The engineer of (Hong Kong) Co., Ltd. briefly introduces some methods. First, the observation method using sight, smell, touch. Sometimes, damaged components will discolor, blister or have burnt spots; burnt components will produce some special odor; shorted chips will become hot; virtual soldering or desoldering can also be observed with the naked eye. . 2. Knocking hand pressure method When we use the instrument, we often encounter the phenomenon that the instrument is running well and badly. Most of this phenomenon is caused by poor contact or virtual welding. In this case, tapping and hand pressing can be used. So-called“tap”It is to tap the plug-in board or component lightly with a small rubber hammer or other knocking object to see if it will cause an error or downtime. so-called“hand press”That is, when a fault occurs, after turning off the power, press the plugged parts, plugs and sockets firmly by hand again, and then turn on the power to try whether the fault will be eliminated. If you find that tapping on the casing is normal, and hitting it again is abnormal, it is best to reinsert all the connectors and try again. 3. Comparison method It is required to have two instruments of the same type, and one of them is in normal operation. Using this method also requires the necessary equipment, such as a multimeter, oscilloscope, etc. According to the nature of comparison, there are voltage comparison, waveform comparison, static impedance comparison, output result comparison, current comparison and so on. The specific method is: let the faulty instrument and the normal instrument operate under the same conditions, and then detect the signals of some points and then compare the two groups of signals measured. If there is a difference, it can be concluded that the fault is here. This method requires the maintenance personnel to have considerable knowledge and skills. Fourth, the elimination method The so-called elimination method is a method of judging the cause of the failure by plugging in some plug-in boards and devices in the machine. When the instrument returns to normal after a plug-in board or device is removed, it means that the fault occurs there. 5. Capacitor bypass method When a certain circuit produces a strange phenomenon, such as the display confusion, the capacitor bypass method can be used to determine the part of the circuit that is likely to fail. Connect the capacitor across the power supply and ground of the IC; connect the transistor circuit across the base input or collector output to observe the effect on the fault phenomenon. If the failure phenomenon disappears when the capacitor bypass input terminal is invalid and its output terminal is bypassed, it is determined that the fault occurs in this stage of the circuit. 6. Replacement method It is required to have two instruments of the same model or have enough spare parts. Replace a good spare with the same component on the faulty machine to see if the fault is eliminated. Seven, heating and cooling method Sometimes, the instrument works for a long time, or when the temperature of the working environment is high in summer, it will malfunction. Shut down and check normally, stop for a period of time and then restart it normally, and then malfunction again after a while. This phenomenon is due to the poor performance of individual ICs or components, and the high temperature characteristic parameters do not meet the index requirements. In order to find out the cause of the failure, the heating and cooling method can be used. The so-called cooling is to use cotton fiber to wipe the anhydrous alcohol on the part that may fail to cool down when the failure occurs, and observe whether the failure is eliminated. The so-called temperature rise is to artificially raise the ambient temperature. For example, use an electric soldering iron to approach the suspicious part (be careful not to raise the temperature too high to damage the normal device) to see if the fault occurs. Eight, the shoulder riding method The shoulder riding method is also called the parallel method. Put a good IC chip on the chip to be checked, or connect good components (resistor capacitors, diodes, transistors, etc.) in parallel with the components to be checked, and maintain good contact. If the fault comes from the internal open circuit of the device or Reasons such as poor contact can be ruled out by this method. Nine, state adjustment method Generally speaking, before the fault is determined, do not touch the components in the circuit casually, especially the adjustable devices, such as potentiometers. However, if the double reference measures are taken in advance (for example, the position is marked or the voltage value or resistance value is measured before being touched), it is still allowed to be touched if necessary. Maybe after the change sometimes the glitch will go away. 10. Isolation method The fault isolation method does not require the same type of equipment or spare parts for comparison, and is safe and reliable. According to the fault detection flow chart, the division and encirclement gradually narrow the fault search range, and then cooperate with methods such as signal comparison and component exchange to find the fault location very quickly. More about Textile Instruments: http://www.standard-groups.com/TextileGarment/

GET IN TOUCH WITH Us
recommended articles
What is a Light Fastness Tester?
A Light Fastness Tester accelerates material aging by simulating sunlight (xenon lamps) and moisture to predict long-term durability. Used in textiles, automotive, plastics, and more, it follows AATCC TM 16, ISO 105-B02, and ASTM standards. Features include real-time light control, temperature/humidity regulation, and energy-efficient testing.
According to ASTM D642 Standard: Detailed Box Compression Strength Tester GT-N02A
The ASTM D642 standard defines the test method for determining the compressive resistance of shipping containers, like corrugated boxes, when faced with static compressive forces. This article details the test procedure and introduces the GESTER GT-N02A and GT-N02B Box Compression Testers, which are fully compliant with ASTM D642, ISO 12048, and TAPPI T804. These versatile machines perform destructive strength tests, constant value tests, and simulated long-term stacking tests to ensure your pac
Welcom UK Client Visits GESTER: A Journey of Partnership
GESTER specializes in R&D and production of advanced textile testing equipment, covering fabric, yarn, color fastness, and flammability tests. Our UK client visit highlights our commitment to quality, customization, and efficient service, reinforcing trust for long-term partnerships.
Essential Guide to Horizontal Flammability Tester Maintenance for Optimal Performance
This guide covers essential maintenance tips for the Horizontal Flammability Tester, including daily, weekly, and monthly checklists to ensure optimal performance and safety compliance. It also provides troubleshooting solutions for common issues, storage guidelines, and when to seek professional servicing. Maintaining Horizontal Flammability Tester reduces costs, enhances accuracy, and ensures compliance with industry standards like ISO 3795.
Understanding the Color Fastness To Washing Testing Machine GT-D07
The GESTER GT-D07 Color Fastness To Washing Testing Machine is designed to evaluate the color durability of dyed fabrics under washing and dry-cleaning conditions. By simulating real washing processes, it helps determine how resistant a fabric is to fading and staining, ensuring consistency, reliability, and compliance with international standards. With stainless-steel construction, safety features, and precise temperature and timing control, the GT-D07 provides an efficient and standardized testing solution for textile manufacturers worldwide.
Brightness Tester for Paper: Applications, Function, and Standards
The Brightness Tester for Paper is a precision instrument designed to measure the brightness or whiteness of materials, ensuring quality and consistency across industries like papermaking, textiles, chemicals, and food production. This article explores its applications, key functions, and compliance with industry standards such as ISO and GB/T. Learn why this device is essential for maintaining high-quality standards in material production and inspection.
Do you know the Down Proof of Fabrics?
Down-proof performance is crucial for fabrics in down jackets, duvets, and comforters. Poor downproofing leads to feather leakage, reducing warmth and aesthetics. The GT-C41 Down Proof Testing Machine evaluates fabric tightness to prevent feather penetration, ensuring high-quality production. Learn how it works and why it matters.
What Are the Types of Color Fastness Testing for Fabrics?
Color fastness testing evaluates how well fabrics resist fading or bleeding under conditions like washing, rubbing, light exposure, and perspiration. Key tests include rubbing fastness, washing fastness, light fastness, perspiration fastness, and sublimation fastness. These tests ensure textiles maintain color integrity, prevent health risks, and meet quality standards. Learn about different testing methods and equipment used in the textile industry.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Understanding the Operation of Crush Tester
Crush Testers, such as the GT-N09, are essential tools in the packaging industry for evaluating the compressive strength of materials like cardboard and corrugated boards. This guide provides a detailed overview of testing methods like Edge Crush Test (ECT), Ring Crush Test (RCT), Flat Crush Test (FCT), Concora Medium Test (CMT), and Pin Adhesion Test (PAT). It also includes a step-by-step operation procedure for the GT-N09 Crush Tester and key precautions to ensure accurate and reliable test re
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect