loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Analysis of several methods commonly used in textile instrument maintenance1

Textile instruments, as a type of instrument often tried by textile enterprises, are frequently used in daily production. Textile instruments will inevitably lead to wear and tear during the trial process. How should people face and maintain some common faults? ? Returning to the factory for maintenance will waste a lot of time for the company. The engineer of (Hong Kong) Co., Ltd. briefly introduces some methods. First, the observation method using sight, smell, touch. Sometimes, damaged components will discolor, blister or have burnt spots; burnt components will produce some special odor; shorted chips will become hot; virtual soldering or desoldering can also be observed with the naked eye. . 2. Knocking hand pressure method When we use the instrument, we often encounter the phenomenon that the instrument is running well and badly. Most of this phenomenon is caused by poor contact or virtual welding. In this case, tapping and hand pressing can be used. So-called“tap”It is to tap the plug-in board or component lightly with a small rubber hammer or other knocking object to see if it will cause an error or downtime. so-called“hand press”That is, when a fault occurs, after turning off the power, press the plugged parts, plugs and sockets firmly by hand again, and then turn on the power to try whether the fault will be eliminated. If you find that tapping on the casing is normal, and hitting it again is abnormal, it is best to reinsert all the connectors and try again. 3. Comparison method It is required to have two instruments of the same type, and one of them is in normal operation. Using this method also requires the necessary equipment, such as a multimeter, oscilloscope, etc. According to the nature of comparison, there are voltage comparison, waveform comparison, static impedance comparison, output result comparison, current comparison and so on. The specific method is: let the faulty instrument and the normal instrument operate under the same conditions, and then detect the signals of some points and then compare the two groups of signals measured. If there is a difference, it can be concluded that the fault is here. This method requires the maintenance personnel to have considerable knowledge and skills. Fourth, the elimination method The so-called elimination method is a method of judging the cause of the failure by plugging in some plug-in boards and devices in the machine. When the instrument returns to normal after a plug-in board or device is removed, it means that the fault occurs there. 5. Capacitor bypass method When a certain circuit produces a strange phenomenon, such as the display confusion, the capacitor bypass method can be used to determine the part of the circuit that is likely to fail. Connect the capacitor across the power supply and ground of the IC; connect the transistor circuit across the base input or collector output to observe the effect on the fault phenomenon. If the failure phenomenon disappears when the capacitor bypass input terminal is invalid and its output terminal is bypassed, it is determined that the fault occurs in this stage of the circuit. 6. Replacement method It is required to have two instruments of the same model or have enough spare parts. Replace a good spare with the same component on the faulty machine to see if the fault is eliminated. Seven, heating and cooling method Sometimes, the instrument works for a long time, or when the temperature of the working environment is high in summer, it will malfunction. Shut down and check normally, stop for a period of time and then restart it normally, and then malfunction again after a while. This phenomenon is due to the poor performance of individual ICs or components, and the high temperature characteristic parameters do not meet the index requirements. In order to find out the cause of the failure, the heating and cooling method can be used. The so-called cooling is to use cotton fiber to wipe the anhydrous alcohol on the part that may fail to cool down when the failure occurs, and observe whether the failure is eliminated. The so-called temperature rise is to artificially raise the ambient temperature. For example, use an electric soldering iron to approach the suspicious part (be careful not to raise the temperature too high to damage the normal device) to see if the fault occurs. Eight, the shoulder riding method The shoulder riding method is also called the parallel method. Put a good IC chip on the chip to be checked, or connect good components (resistor capacitors, diodes, transistors, etc.) in parallel with the components to be checked, and maintain good contact. If the fault comes from the internal open circuit of the device or Reasons such as poor contact can be ruled out by this method. Nine, state adjustment method Generally speaking, before the fault is determined, do not touch the components in the circuit casually, especially the adjustable devices, such as potentiometers. However, if the double reference measures are taken in advance (for example, the position is marked or the voltage value or resistance value is measured before being touched), it is still allowed to be touched if necessary. Maybe after the change sometimes the glitch will go away. 10. Isolation method The fault isolation method does not require the same type of equipment or spare parts for comparison, and is safe and reliable. According to the fault detection flow chart, the division and encirclement gradually narrow the fault search range, and then cooperate with methods such as signal comparison and component exchange to find the fault location very quickly. More about Textile Instruments: http://www.standard-groups.com/TextileGarment/

GET IN TOUCH WITH Us
recommended articles
Installation Training for the Incline Impact Tester GT-N49
Our expert team provides comprehensive on-site installation and training for the Incline Impact Tester GT-N49. This critical packaging testing equipment simulates real-world impacts during handling, transport, and stacking to evaluate product damage resistance. Learn about its key features like flexible moving plates, height adjustment, pneumatic angle control, and remote operation safety. Our service ensures proper setup, operational mastery, maintenance guidance, and troubleshooting support fo
How to Know the Fabric Shrinkage Test for Your Projects
Master fabric shrinkage testing with this definitive guide. Understand causes of shrinkage, industry standards (ISO, GB, AATCC), step-by-step testing methods using Wascator equipment, and strategies to minimize shrinkage for superior garment quality and customer satisfaction.
GESTER: China Top PPE Testing Equipment Company Leading Global Safety Standards
Since 1997, GESTER International Co., Ltd has emerged as China’s top PPE testing equipment company, with 25+ years of R&D experience in high-precision testing instruments. Serving clients in over 160 countries and partnering with global leaders like SGS, Intertek, and TUV, GESTER aligns its products with international standards (ISO, ASTM, EN, GB) to ensure reliable PPE performance. Highlighted by the GT-RC02B TPP Thermal Protection Tester—capable of simulating extreme thermal environments and calculating critical safety metrics like TPP values and escape time—and the GT-KC28 TDM Cut Test Machine, GESTER’s portfolio covers thermal protection, cut resistance, footwear testing, and more. The company offers comprehensive support, including ISO 17025/NFPA-aligned calibration, on-site installation, and staff training, empowering PPE manufacturers and testing laboratories to meet stringent global regulations, prevent workplace injuries, and accelerate market access. As a leader in global safety standards, GESTER combines technical precision, user-centric design, and lifecycle service to deliver tailored solutions for high-risk industries worldwide. Visit https://www.gesterinstruments.com/ for full product details.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
Heat Contact Machine GT-C101-The Ultimate Selection Guide

The Heat Contact Machine GT-C101 is a specialized testing instrument designed for evaluating the heat resistance and thermal protective performance of gloves, protective clothing, and other heat-resistant materials used in high-temperature environments. In industries such as smelting, casting, welding, and glass manufacturing, workers are frequently exposed to intense heat, making accurate testing of contact heat resistance essential for ensuring safety and compliance.

GT-C101 simulates real working conditions by measuring heat transfer delay and thermal transmission under instant contact with high-temperature surfaces. Fully compliant with EN 407, EN 702, and ISO 12127-1 standards, this machine provides precise, repeatable data for manufacturers, laboratories, and research institutions. With high-temperature capability up to 500°C, advanced calorimetry, digital monitoring, and adjustable contact speed, the Heat Contact Machine GT-C101 is an indispensable tool for developing and certifying next-generation PPE and heat-insulation materials.
Bally Leather Flexing Tester GT-KC10A Assembly Guide
This comprehensive guide provides detailed instructions for the proper assembly, calibration, and operation of the Bally Leather Flexing Tester GT-KC10A. Essential for quality control labs, it ensures accurate testing of flex resistance in leather, coated fabrics, and textiles used in footwear uppers, helping to prevent material failure.
Why TDM Cut Test Machine GT-KC28 Is Needed in PPE Testing

Cut resistance is one of the most critical performance indicators in personal protective equipment (PPE) testing, directly affecting worker safety in high-risk industries such as metal processing, machinery manufacturing, and emergency rescue. The TDM Cut Test Machine GT-KC28 plays a vital role in accurately evaluating the cut resistance of PPE products, including gloves, protective clothing, footwear materials, composite materials, rubber, and industrial textiles.

By adopting high-precision force control systems, intelligent data processing, and stable transmission technology, the GT-KC28 TDM Cut Tester can accurately measure the critical cutting force of materials and ensure excellent repeatability and comparability of test results. Its user-friendly touch-screen operation, comprehensive data storage, USB data export, and built-in thermal printer greatly improve laboratory efficiency and data traceability.

The TDM Cut Test Machine GT-KC28 fully complies with major international and national standards such as ISO 13997, EN 388, ASTM F2992/F2992M, ANSI/ISEA 105, and GB 24541-2022, making it a reliable solution for PPE manufacturers, third-party testing laboratories, and research institutions. Through precise and standardized cut resistance testing, the GT-KC28 helps reduce industrial cutting injuries, supports PPE certification across global markets, and ensures that protective equipment delivers reliable safety performance in real-world applications.
Shoes & Leather - Guangzhou 2025: GESTER Showcased Footwear testing Equipment on Site
GESTER impressed at Shoes & Leather Guangzhou 2025 by exhibiting high-precision footwear testing equipment like the DIN Abrasion Tester and Bally Flexing Tester, essential for quality control in shoe production. The event fostered industry collaboration, with GESTER attracting global buyers and strengthening partnerships.
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
According to ASTM D642 Standard: Detailed Box Compression Strength Tester GT-N02A
The ASTM D642 standard defines the test method for determining the compressive resistance of shipping containers, like corrugated boxes, when faced with static compressive forces. This article details the test procedure and introduces the GESTER GT-N02A and GT-N02B Box Compression Testers, which are fully compliant with ASTM D642, ISO 12048, and TAPPI T804. These versatile machines perform destructive strength tests, constant value tests, and simulated long-term stacking tests to ensure your pac
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect