loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Test Standard
Test Standard

Analysis of several methods commonly used in textile instrument maintenance1

Textile instruments, as a type of instrument often tried by textile enterprises, are frequently used in daily production. Textile instruments will inevitably lead to wear and tear during the trial process. How should people face and maintain some common faults? ? Returning to the factory for maintenance will waste a lot of time for the company. The engineer of (Hong Kong) Co., Ltd. briefly introduces some methods. First, the observation method using sight, smell, touch. Sometimes, damaged components will discolor, blister or have burnt spots; burnt components will produce some special odor; shorted chips will become hot; virtual soldering or desoldering can also be observed with the naked eye. . 2. Knocking hand pressure method When we use the instrument, we often encounter the phenomenon that the instrument is running well and badly. Most of this phenomenon is caused by poor contact or virtual welding. In this case, tapping and hand pressing can be used. So-called“tap”It is to tap the plug-in board or component lightly with a small rubber hammer or other knocking object to see if it will cause an error or downtime. so-called“hand press”That is, when a fault occurs, after turning off the power, press the plugged parts, plugs and sockets firmly by hand again, and then turn on the power to try whether the fault will be eliminated. If you find that tapping on the casing is normal, and hitting it again is abnormal, it is best to reinsert all the connectors and try again. 3. Comparison method It is required to have two instruments of the same type, and one of them is in normal operation. Using this method also requires the necessary equipment, such as a multimeter, oscilloscope, etc. According to the nature of comparison, there are voltage comparison, waveform comparison, static impedance comparison, output result comparison, current comparison and so on. The specific method is: let the faulty instrument and the normal instrument operate under the same conditions, and then detect the signals of some points and then compare the two groups of signals measured. If there is a difference, it can be concluded that the fault is here. This method requires the maintenance personnel to have considerable knowledge and skills. Fourth, the elimination method The so-called elimination method is a method of judging the cause of the failure by plugging in some plug-in boards and devices in the machine. When the instrument returns to normal after a plug-in board or device is removed, it means that the fault occurs there. 5. Capacitor bypass method When a certain circuit produces a strange phenomenon, such as the display confusion, the capacitor bypass method can be used to determine the part of the circuit that is likely to fail. Connect the capacitor across the power supply and ground of the IC; connect the transistor circuit across the base input or collector output to observe the effect on the fault phenomenon. If the failure phenomenon disappears when the capacitor bypass input terminal is invalid and its output terminal is bypassed, it is determined that the fault occurs in this stage of the circuit. 6. Replacement method It is required to have two instruments of the same model or have enough spare parts. Replace a good spare with the same component on the faulty machine to see if the fault is eliminated. Seven, heating and cooling method Sometimes, the instrument works for a long time, or when the temperature of the working environment is high in summer, it will malfunction. Shut down and check normally, stop for a period of time and then restart it normally, and then malfunction again after a while. This phenomenon is due to the poor performance of individual ICs or components, and the high temperature characteristic parameters do not meet the index requirements. In order to find out the cause of the failure, the heating and cooling method can be used. The so-called cooling is to use cotton fiber to wipe the anhydrous alcohol on the part that may fail to cool down when the failure occurs, and observe whether the failure is eliminated. The so-called temperature rise is to artificially raise the ambient temperature. For example, use an electric soldering iron to approach the suspicious part (be careful not to raise the temperature too high to damage the normal device) to see if the fault occurs. Eight, the shoulder riding method The shoulder riding method is also called the parallel method. Put a good IC chip on the chip to be checked, or connect good components (resistor capacitors, diodes, transistors, etc.) in parallel with the components to be checked, and maintain good contact. If the fault comes from the internal open circuit of the device or Reasons such as poor contact can be ruled out by this method. Nine, state adjustment method Generally speaking, before the fault is determined, do not touch the components in the circuit casually, especially the adjustable devices, such as potentiometers. However, if the double reference measures are taken in advance (for example, the position is marked or the voltage value or resistance value is measured before being touched), it is still allowed to be touched if necessary. Maybe after the change sometimes the glitch will go away. 10. Isolation method The fault isolation method does not require the same type of equipment or spare parts for comparison, and is safe and reliable. According to the fault detection flow chart, the division and encirclement gradually narrow the fault search range, and then cooperate with methods such as signal comparison and component exchange to find the fault location very quickly. More about Textile Instruments: http://www.standard-groups.com/TextileGarment/

GET IN TOUCH WITH Us
recommended articles
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
Shoe Steel Shank Bending Resistance Tester: Everything You Should Know
The Shoe Steel Shank Bending Resistance Tester is a pivotal tool in the footwear industry, designed to assess the strength and flexibility of steel shanks. These components, integral to footwear integrity, undergo rigorous testing to ensure durability and safety. This guide explores the tester’s functionality, advantages, and key operational steps, emphasizing its value for manufacturers committed to delivering high-quality, reliable products.
Analysis of Pilling Influencing Factors and Testing Methods
Pilling testing plays a vital role in textile quality control, helping manufacturers evaluate and improve the wear performance of fabrics. Through the use of advanced instruments like ICI Pilling Box Test Method (GT-C18) , Martindale Abrasion Test Method (GT-C13B) , and Random Tumble Pilling Test Method (GT-C19A) , laboratories can conduct precise and standardized assessments, ensuring that final textile products deliver superior appearance, comfort, and longevity.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
Do you know the Down Proof of Fabrics?
Down-proof performance is crucial for fabrics in down jackets, duvets, and comforters. Poor downproofing leads to feather leakage, reducing warmth and aesthetics. The GT-C41 Down Proof Testing Machine evaluates fabric tightness to prevent feather penetration, ensuring high-quality production. Learn how it works and why it matters.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
Understanding UV Aging Chambers: Applications, Features, and Advantages
The GT-C29 UV Aging Chamber simulates years of environmental damage in days using UVA-340 lamps, rain, and temperature cycles. Ideal for paints, plastics, automotive, and wood industries, it offers high accuracy, cost efficiency, and safety. Learn how it accelerates R&D and quality control.
An Introduction to Footwear Electric Shock Resistant Tester GT-KB42
The GT-KB42 Footwear Electric Shock Resistant Tester by GESTER assesses the dielectric strength of safety shoes, boots, and insulating footwear to prevent workplace electrical hazards. Complying with ANSI, CSA, GB, and ASTM standards, it features precision voltage control, real-time leakage monitoring, and multi-standard compatibility—ideal for power utilities, construction, and industrial safety applications.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect