loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Test Standard
Test Standard

Semiconductor technology reduces power battery fire risk

When a lithium-ion battery is charged, lithium ions are transported to the negative electrode and deposited on the surface of the battery in the form of lithium metal, thereby forming dendritic protrusions. These lithium dendrites can cause uncontrollable volume fluctuations and lead to reactions between solid electrodes and liquid electrolytes, which can cause fires and severely affect battery performance. To effectively solve this problem, a research team led by Dr. Joong Kee Lee of the Energy Storage Research Center of the Korea Institute of Science and Technology (KIST) successfully suppressed dendrite growth by forming a protective semiconductor passivation layer on the surface of the lithium electrode. The crystals have multiple branches and can cause fires in batteries in electric vehicles. It is understood that in order to prevent dendrite formation, the research team exposed the plasma to fullerene (C60). Fullerene is a highly electronically conductive semiconductor material that enables the formation of a semiconducting passivating carbonaceous layer between the lithium electrode and the electrolyte. The semiconducting passivation carbonaceous layer allows lithium ions to pass through, while blocking electrons through the resulting Schottky barrier, and preventing electrons and ions from interacting on and inside the electrode surface, avoiding the formation of lithium crystals and dendrite growth. Dr. Joong Kee Lee said:“The dendrite growth on the lithium electrode is effectively inhibited, which helps to improve the safety of the battery. The research proposes techniques for developing highly safe lithium metal electrodes, providing a blueprint for developing next-generation batteries without fire risks.”The next goal of the research team is to improve the commercial viability of the technology:“Replacing fullerenes with cheaper materials to make semiconducting passivating carbonaceous layers makes them more cost-effective.”

GET IN TOUCH WITH Us
recommended articles
According to ASTM D642 Standard: Detailed Box Compression Strength Tester GT-N02A
The ASTM D642 standard defines the test method for determining the compressive resistance of shipping containers, like corrugated boxes, when faced with static compressive forces. This article details the test procedure and introduces the GESTER GT-N02A and GT-N02B Box Compression Testers, which are fully compliant with ASTM D642, ISO 12048, and TAPPI T804. These versatile machines perform destructive strength tests, constant value tests, and simulated long-term stacking tests to ensure your pac
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
How to Conduct Whole Shoes Flexing Tester: Step-by-Step Process
This article explores the Whole Shoes Flexing Tester, focusing on its operation, applications, and features. It offers a detailed, step-by-step guide to help you conduct shoe flexing tests efficiently while improving the durability and performance of footwear products.
Fabrics Specification Parameters and Testing Standards : A Complete Guide
These specifications outline the physical, mechanical, and functional characteristics of fabrics, while testing standards ensure that fabrics meet these predefined criteria. This synergy is vital in influencing manufacturing efficiency and end-user satisfaction, ensuring that products meet performance expectations across diverse applications.
What are The Flame Retardant Test Methods ?
Flame retardant testing evaluates materials' ability to resist ignition and slow fire spread. This guide covers key textile test methods (45°, horizontal, vertical), standards (ASTM, ISO, BS), and equipment like flammability testers for upholstery, carpets, and fabrics.
Shoe Steel Shank Bending Resistance Tester: Everything You Should Know
The Shoe Steel Shank Bending Resistance Tester is a pivotal tool in the footwear industry, designed to assess the strength and flexibility of steel shanks. These components, integral to footwear integrity, undergo rigorous testing to ensure durability and safety. This guide explores the tester’s functionality, advantages, and key operational steps, emphasizing its value for manufacturers committed to delivering high-quality, reliable products.
Analysis of Pilling Influencing Factors and Testing Methods
Pilling testing plays a vital role in textile quality control, helping manufacturers evaluate and improve the wear performance of fabrics. Through the use of advanced instruments like ICI Pilling Box Test Method (GT-C18) , Martindale Abrasion Test Method (GT-C13B) , and Random Tumble Pilling Test Method (GT-C19A) , laboratories can conduct precise and standardized assessments, ensuring that final textile products deliver superior appearance, comfort, and longevity.
How to Choose Light Fastness Tester: Water-Cooled and Air-Cooled
Choosing between water-cooled and air-cooled light fastness testers depends on precision needs, budget, and application. Water-cooled testers (like GESTER GT-3000) offer superior spectral accuracy and stability for rigorous standards (e.g., automotive, coatings). Air-cooled models (like GESTER GT-D02A-1) provide energy efficiency and easier installation for routine QC. This guide compares cooling methods, features, and applications to help you select the optimal tester.
Shoes & Leather - Guangzhou 2025: GESTER Showcased Footwear testing Equipment on Site
GESTER impressed at Shoes & Leather Guangzhou 2025 by exhibiting high-precision footwear testing equipment like the DIN Abrasion Tester and Bally Flexing Tester, essential for quality control in shoe production. The event fostered industry collaboration, with GESTER attracting global buyers and strengthening partnerships.
Elmendorf Tearing Strength Tester GT-C11A You Should Know
The Elmendorf Tearing Strength Tester GT-C11A is a pivotal instrument for evaluating the tearing resistance of various materials, including textiles, non-wovens, paper, and films. Utilizing the proven pendulum method, it delivers precise, repeatable data crucial for quality assurance, product development, and compliance with international standards like ASTM and ISO. This article explores its working principle, key features such as automated testing and pneumatic clamping, and its wide-ranging applications across multiple industries, highlighting why the GT-C11A is a trusted choice for professionals seeking reliable and efficient material performance analysis.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect