loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

ISO3917:1999 Automotive Safety Test Standard1

1 Subject content and scope of application This standard specifies the test methods for radiation resistance, high temperature, humidity, combustion and simulated climate resistance of safety glass for road vehicles. This standard applies to the safety requirements for safety glass for road vehicles (hereinafter referred to as safety glass). Such safety glass includes articles processed from various types of glass or formed from glass combined with other materials. Normative references This standard uses the following standards by reference. The latest revisions and supplements or version changes of various standards have not been reflected in time. However, the parties through the development of the standard are encouraged to apply the latest version as far as possible, as shown below. For standards that do not give time, the latest time shall prevail. ISO and IEC members are responsible for the registration of existing valid International Standards. ISO 3536: 1999 ISO 3537: 1999 ISO 3538: 1997 ISO 3795: 1989 ISO 4892-1: 1999 ISO 4892-2: 1999 ISO 4892-4: 1999 ISO 15082: 1999 given in. Test conditions Unless otherwise specified, the test should be carried out under the following conditions: -- .Temperature: 20℃±5℃ --. Air pressure: 86kPa-106 kPa (860mbar to 1060 mbar) -- . Relative humidity: 60%±20% Test items and applications For some types of safety glass, if the test results can be predicted from some of its known properties, it is not necessary to carry out all the tests specified in this standard. Radiation resistance test 6.1 The purpose of the test is to determine whether the safety glass will have obvious discoloration or reduced transmittance after being irradiated for a certain period of time. 6.2 Device 6.2.1 Irradiation light source Ozone-free quartz tube type medium pressure mercury vapor arc lamp. The axis of the lamp housing shall be vertical. The nominal size of the lamp is 360mm in length, 9.5mm in diameter, and 300mm in arc length±14mm, its operating power is 750 W±50W. Any other irradiating source equivalent to the lamps specified above may be used. In order to check the equivalence of alternative light sources, a comparison is made by measuring the energy emitted in the wavelength range of 300nm-450nm, other wavelengths being filtered out with suitable filters. Therefore, filters should be added when using alternative light sources. For safety glass whose service conditions do not correlate well with this test, the test conditions must be reconsidered. 6.2.2 Power transformers and capacitors capable of supplying a minimum starting peak voltage of 1100 V and 500 V for arc lamps (6.2.1)±50V working voltage. 6.2.3 The sample fixing and rotating device rotates around the irradiation source set at the uranium core at a speed of 1 r/min-5 r/min to ensure uniform irradiation. 6.3 Sample Size: 76mm×300mm 6.4 Test procedure Before irradiation, measure the transmittance of three test pieces according to ISO 3538, protect a part of each piece from irradiation, and then place the test piece on a device 230mm away from the lamp axis , and make it parallel to the lamp axis in the 300mm length direction. Maintain the sample temperature at 45 throughout the test±5°C. The side of the sample facing the lamp shall be the side facing outward when loading. For lamps of type 6.2.1, the irradiation time is 100h. After irradiation, measure the transmittance of the irradiation area of ​​each sample. 6.5 Expression of results Compare the transmittance of the sample before and after irradiation of the same material. The change is expressed as a percentage. Evaluation of discoloration: -- Place the sample on a white background, and compare the difference between the irradiation area and the shaded area; -- Or measure the three primary color coordinates of the sample before and after irradiation, and calculate the color difference according to the International Commission on Illumination (CIE). 7. Heat resistance test 7.1 Test purpose To evaluate whether the appearance quality of safety glass changes significantly after being subjected to high temperature for a certain period of time. 7.2 Test procedure The dimensions shall be at least 300mm×One or more samples of 300mm are heated to 100 ℃ 0-2 ℃, hold for 2h, and then let the sample cool to room temperature naturally. If the two outer surfaces of the safety glass are made of inorganic materials, the sample can be immersed vertically in boiling water at 100 °C 0-2 °C for a specified time during the test. Take care to avoid excessive thermal shock. If the sample is cut from the product, one side of the sample should be part of one edge of the product. 7.3 Expression of results According to the above 7.2 test, observe the bubbles and other defects generated in the sample to evaluate the high temperature resistance of safety glass. Defects within 15mm from the non-cut edge, 25mm from the cut edge, or within 10mm from any crack that may occur are not considered. If the crack of the sample expands to the extent that it confuses the test results, the sample will be scrapped and another sample will be tested. Moisture resistance test 8.1 The purpose of the test is to determine whether the safety glass can withstand the action of atmospheric moisture for a certain period of time. 8.2 Test procedure The dimensions shall be at least 300 mm×One or more samples of 300mm are placed vertically in a closed container for 2 weeks, and the temperature of the container is kept at 50℃±2°C, relative humidity (95%±4) %. Under the above conditions, there should be no condensation of water vapor on the surface of the sample. If several samples are tested at the same time, appropriate gaps should be left between the samples. To prevent condensed water on the top and walls of the container from dripping onto the sample.​​

are present in just about every facet of modern life.

GESTER International Co.,Limited attaches great importance to customers and assists them in achieving their demands.

In a nutshell, is actually an ultimate solution for tensile tester manufacturers and underestimating its value cost you higher than anything else. So grab it before you miss the boat.

GET IN TOUCH WITH Us
recommended articles
Everything You Need to Know About Programmable Temperature Humidity Chamber
A Programmable Temperature Humidity Chamber simulates environmental conditions to test product durability, stability (like shelf life & ageing), and performance across materials, electronics, automotive parts, food, and pharmaceuticals. This guide explains its five core systems (Control, Refrigeration, Heating, Humidity, Air Circulation) and their functions for precise testing.
Analysis of Pilling Influencing Factors and Testing Methods
Pilling testing plays a vital role in textile quality control, helping manufacturers evaluate and improve the wear performance of fabrics. Through the use of advanced instruments like ICI Pilling Box Test Method (GT-C18) , Martindale Abrasion Test Method (GT-C13B) , and Random Tumble Pilling Test Method (GT-C19A) , laboratories can conduct precise and standardized assessments, ensuring that final textile products deliver superior appearance, comfort, and longevity.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
Heat Contact Machine GT-C101-The Ultimate Selection Guide

The Heat Contact Machine GT-C101 is a specialized testing instrument designed for evaluating the heat resistance and thermal protective performance of gloves, protective clothing, and other heat-resistant materials used in high-temperature environments. In industries such as smelting, casting, welding, and glass manufacturing, workers are frequently exposed to intense heat, making accurate testing of contact heat resistance essential for ensuring safety and compliance.

GT-C101 simulates real working conditions by measuring heat transfer delay and thermal transmission under instant contact with high-temperature surfaces. Fully compliant with EN 407, EN 702, and ISO 12127-1 standards, this machine provides precise, repeatable data for manufacturers, laboratories, and research institutions. With high-temperature capability up to 500°C, advanced calorimetry, digital monitoring, and adjustable contact speed, the Heat Contact Machine GT-C101 is an indispensable tool for developing and certifying next-generation PPE and heat-insulation materials.
Why is a Computerized Universal Testing Machine Important?
A computerized universal testing machine (UTM) is essential for evaluating material properties like tensile strength, compression, and bending. Widely used in industries such as aerospace, automotive, and footwear, UTMs ensure compliance with ISO, ASTM, and DIN standards while improving accuracy and efficiency in quality control.
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
A Comprehensive Guide to Safety Shoes Compression and Puncture Tester GT-KB12A
The GT-KB12A Safety Shoe Compression and Puncture Tester evaluates footwear against EN ISO 20344 standards, ensuring protection against heavy impacts and sharp objects. This guide covers its working principle, testing steps, and compliance importance for industrial safety.
Why TDM Cut Test Machine GT-KC28 Is Needed in PPE Testing

Cut resistance is one of the most critical performance indicators in personal protective equipment (PPE) testing, directly affecting worker safety in high-risk industries such as metal processing, machinery manufacturing, and emergency rescue. The TDM Cut Test Machine GT-KC28 plays a vital role in accurately evaluating the cut resistance of PPE products, including gloves, protective clothing, footwear materials, composite materials, rubber, and industrial textiles.

By adopting high-precision force control systems, intelligent data processing, and stable transmission technology, the GT-KC28 TDM Cut Tester can accurately measure the critical cutting force of materials and ensure excellent repeatability and comparability of test results. Its user-friendly touch-screen operation, comprehensive data storage, USB data export, and built-in thermal printer greatly improve laboratory efficiency and data traceability.

The TDM Cut Test Machine GT-KC28 fully complies with major international and national standards such as ISO 13997, EN 388, ASTM F2992/F2992M, ANSI/ISEA 105, and GB 24541-2022, making it a reliable solution for PPE manufacturers, third-party testing laboratories, and research institutions. Through precise and standardized cut resistance testing, the GT-KC28 helps reduce industrial cutting injuries, supports PPE certification across global markets, and ensures that protective equipment delivers reliable safety performance in real-world applications.
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
How to Improve Plastic Film Drop Dart Impact Strength
Discover actionable strategies to enhance the drop dart impact strength of plastic films for packaging, agriculture, and construction. Learn how material selection, additives, processing, and rigorous ASTM/ISO drop dart impact testing ensure product durability and prevent failure.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect