loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Test Standard
Test Standard

Study on the filter performance of plush filter material for air conditioning return air filter

A large amount of dust is generated during the production of shredded tobacco and cigarette rolling in the cigarette workshop, which not only affects the production process of cigarettes, but is also detrimental to the health of laborers [1-5]. The air-conditioning system of the cigarette workshop should ensure the temperature and humidity of the workshop required by the production process, and at the same time ensure the cleanliness of the air specified by the process and labor hygiene standards. Especially in the roll-up package workshop, the process produces a large amount of dust and the air contains a high concentration of dust. Although a variety of new filter cartridge dust removal technologies have been adopted [6], the air conditioner will still be affected when the return air purification effect of the air conditioner is not ideal. The heat exchange effect of the surface cooler [7] makes the air conditioner unable to operate normally [8]. At present, the commonly used filter materials in the filter section of the air conditioning system include stainless steel plate mesh, stainless steel wire mesh, multi-layer nylon mesh or non-woven fabrics, etc. [9]. After the air conditioning of some cigarette workshops is upgraded, the sub-high efficiency filter cartridge section adopts a gradient ultra-submicron Fiber filter media [10] and plush filter media. In recent years, the research of gradient ultra-submicron fiber filter materials in the field of dust removal in cigarette workshops has been reported [11-12], but there is still a lack of research on the dust filtering performance of plush filter materials. Therefore, the filtration performance parameters of the plush filter media under different wind speeds and different dust concentrations (mainly including efficiency, resistance, and dust holding capacity) were tested and analyzed, and the comparison method was used to analyze the filtration performance of different types of plush filter media. The best filter performance section of the plush filter material is designed to provide theoretical help for selecting the best filter material for air conditioning return air filtration in cigarette workshops. 1 Materials and methods 1.1 Materials, equipment and instruments 1.1.1 Experimental dust The dust from the air-conditioning return air of the cigarette workshop (poor sliding and strong adhesion) is selected as the experimental dust. 1.1.2 The sample of the plush filter material The experimental object is the plush knitted filter material, which is a pile fabric based on knitted single-sided pad weft knitting. It is constructed and passed through a brushing process to form a uniform fluff layer on the surface. The samples in this experiment are long-pile knitted filter materials JM2 and JM5 and short-pile knitted filter materials DM (Figure 1). Among them, the flocking density on JM5 is greater than that on JM2, and the flocking length of JM5 and JM2 is longer than that on DM. The parameters of the plush filter material sample used in the experiment are shown in Table 1. 1.1.3 The experimental bench is shown in Figure 2. It consists of the experimental dust supply part, the air duct, the fixed device of the experimental filter, the pressure loss measuring device, the dust measuring device and the wind speed measurement. Equipment and other components. Among them, the dust generator sets the dust concentration range (0.6~3 mg/m3) of the inlet dust in accordance with the dust limit of the workplace air of the tobacco dust hygienic standard (2 mg/m3) [13]. The air duct is made of plexiglass pipe in order to observe the flow state of dust in the air duct. Install baffles at the inlet of the pipe, the inlet pipe section of the pipe and the fan interface, and the exhaust pipe section respectively to make the air flow in the pipe uniform, so that the experimental air flow and dust concentration can be uniform to ensure that the dust concentration can be measured in a stable state. The test ports for measuring pressure loss are respectively set on the upper air side and the lower air side, and the distance from the fixed part of the experimental filter is one-half of the diameter of the air pipe, in the form of a static pressure ring pressure measuring device. 1.1.4 Instrument FA1104 digital electronic balance (sensitivity: 0.1 mg, Shanghai Hengping Scientific Instrument Co., Ltd.); U-tube pressure gauge (Changzhou Jiangtai Electronics Co., Ltd.); GH100E dust concentration measuring instrument (Zhengzhou Guangli Technology Co., Ltd. Company); CLIMOMASTER MODEL A531 multifunction instrument (American Kanomax company). 1.2 Methods Through comparative experiments, the filtration efficiency and filtration resistance values u200bu200bof each plush filter material sample at wind speeds of 0.2, 0.4, 0.6, 0.8 and 1.0 m/s, and the dust concentration of 0.6, 1.0, 2.0 and 3.0 mg/ Filter efficiency and filter resistance value under m3. The specific measurement and calculation methods are as follows: (1) Filtration efficiency. Determine the inlet dust concentration by controlling the dust generation time and the amount of dust, and use the dust concentration meter to collect the dust concentration after the filter material, then the filtration efficiency is: ηu003d(C1-C2)/C1 where: C1—dust concentration at the dust inlet, mg/m3; C2—dust concentration at the outlet, mg/m3. If dust is emitted into the pipeline steadily and continuously, the inlet dust concentration C1 is: C1 u003d G/tQt (2) where: G-dust generation, mg; Qt-gas flow, m2/s; t-dust generation time, s. In the same way, the outlet dust concentration C2 can be converted from the dust collection amount G2 in the filtered gas: C2u003dG2/tQt(3)(2) gas flow rate and filtering wind speed. The CLIMOMASTER multi-function instrument is used to measure the airflow velocity in the pipeline, calculate the gas flow, and use the dynamic pressure method (piping pipe tube) for proofreading. The calculation formula is: vu003d 2Pdρ (4) Qtu003dAV (5) where: Qt — Gas flow rate, m2/s; v— average air velocity (filter wind speed), m/s; A—measured cross-sectional area, m2; Pd—average dynamic pressure, Pa; ρ—gas density, kg/m3. (3) Filter resistance. Use a pressure gauge to measure the pressure difference before and after the filter material in the actual filtration process to obtain the filtration resistance.

When you find yourself in need of textile testing equipment tensile tester manufacturers, you may not know where to begin. And that's OK! Search out GESTER International Co.,Limited to handle your textile testing equipment needs.

As President of GESTER International Co.,Limited, I am committed to the enduring values of integrity, accountability, innovation and flexibility, value creation and social responsibility.

This is crucial when you need to maintain innovative information in textile testing equipment.

GET IN TOUCH WITH Us
recommended articles
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
Understanding the Operation of Crush Tester
Crush Testers, such as the GT-N09, are essential tools in the packaging industry for evaluating the compressive strength of materials like cardboard and corrugated boards. This guide provides a detailed overview of testing methods like Edge Crush Test (ECT), Ring Crush Test (RCT), Flat Crush Test (FCT), Concora Medium Test (CMT), and Pin Adhesion Test (PAT). It also includes a step-by-step operation procedure for the GT-N09 Crush Tester and key precautions to ensure accurate and reliable test re
Elmendorf Tearing Strength Tester GT-C11A You Should Know
The Elmendorf Tearing Strength Tester GT-C11A is a pivotal instrument for evaluating the tearing resistance of various materials, including textiles, non-wovens, paper, and films. Utilizing the proven pendulum method, it delivers precise, repeatable data crucial for quality assurance, product development, and compliance with international standards like ASTM and ISO. This article explores its working principle, key features such as automated testing and pneumatic clamping, and its wide-ranging applications across multiple industries, highlighting why the GT-C11A is a trusted choice for professionals seeking reliable and efficient material performance analysis.
Brightness Tester for Paper: Applications, Function, and Standards
The Brightness Tester for Paper is a precision instrument designed to measure the brightness or whiteness of materials, ensuring quality and consistency across industries like papermaking, textiles, chemicals, and food production. This article explores its applications, key functions, and compliance with industry standards such as ISO and GB/T. Learn why this device is essential for maintaining high-quality standards in material production and inspection.
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
GESTER's Success at Shoes & Leather - Vietnam 2025
GESTER successfully participated in Shoes & Leather Vietnam 2025 (July 9-11), showcasing cutting-edge footwear testing machines. Visitors explored equipment like the Bally Resistance Flexing Tester and Martindale Abrasion Tester, with many expressing strong collaboration interest. Learn more about GESTER’s innovative solutions for the footwear industry.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
Box Compression Tester GT-N02B: The Key to Accurate Determination of Packaging Compression Strength
The GT-N02B Box Compression Tester is a high-precision machine designed to evaluate the compressive strength of cartons and packaging materials. With advanced motor control, fast operation, and multi-functional testing capabilities, it ensures reliable results for quality assurance in manufacturing and logistics.
ISO 17694 / ISO 5402-1: Footwear Flexing Resistance Test Methods
Footwear soles and uppers endure thousands of flex cycles during use, risking premature cracking, delamination, or chipping if material resistance is inadequate. This technical analysis details two critical international standards:

1. ISO 5402-1: Specifies the flexometer method for testing leather flex resistance under repeated bending.

2. ISO 17694: Defines test methods for footwear upper and lining flex resistance, simulating real-world bending stress to assess long-term durability.

C
What Are the Test Methods for Fabric Bursting Strength?
Fabric bursting strength measures resistance to rupture under concentrated load. Three primary test methods are used:

Ball Burst Method (ASTM D3787): Steel ball penetration for textiles/films using testers like GT-C02-2.

Hydraulic Method (ISO 13938.1): Fluid pressure on rubber diaphragm for industrial fabrics via GT-C12A.

Pneumatic Method (ISO 13938.2): Compressed air for breathable materials tested with GT-C12B.
Results are influenced by raw materials, yarn properties,
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect