loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Where do VOCs in plastic processing come from and where do they 'remove'?

In the production process of plastic products, the wastes that may be generated can be divided into three categories: solid, liquid and gas. Among them, there are many sources of gaseous waste, which are more harmful. It mainly includes two categories: organic volatile gas (VOC) and inorganic volatile gas. Among them, organic volatile gas VOC has a huge impact on human health. For example, when the VOC in the environment reaches a certain concentration, people will feel headache, nausea, etc. in a short period of time. 1. What is VOC gas? VOC is short for Volatile Organic Compounds, which are highly volatile in the temperature range of 50-260°C. Common volatile organic compounds include: (1) benzenes (such as benzene, toluene, xylene, ethylbenzene); (2) alkanes (tetradecane); (3) aldehydes (formaldehyde); (4) Alcohols (ethanol); (5) ethers, esters (ethyl acetate); (6) ketones (acetone). These VOC gases are generally invisible to us, and some of the smells you smell are not all the smells of these gases themselves. The main sources of the taste of these organic substances include: (1) formaldehyde odor produced by decomposition in POM production; (2) sour taste of HCl produced by decomposition in PVC production when it meets water; (3) monomer in ethylene-vinyl acetate copolymer processing Vinegar smell, etc. released by vinyl acetate residues. 2. Where does VOC gas come from? 1. Printing inks (1) Solvent-based inks will produce VOC pollution such as benzene, ketones, and ethyl acetate during printing and drying. But the printing effect is better, especially for plastic substrates. (2) The organic solvent content in the water-based ink is low (about 20%), so less VOC is generated during use (drying). 2. Acrylic and polyurethane adhesives commonly used in adhesives are still dominated by ethyl acetate organic solvents. 3. Surface coating can eliminate various defects on the surface of plastic products, and endow the products with functions such as electrical conductivity, anti-static, wear resistance, etc., and can also turn dark plastic products into light-colored products. Commonly used acrylic or polyurethane coatings. 4. Mold release agents commonly used in mold release machines contain organic solvents such as CH2Cl2 and CH3CHCl. 3. How to get rid of VOC gas? 1. Resin with low residual monomer content should be selected as far as possible. For example, the content of VC monomer in medical PVC resin is very low, and the VC content can reach 1ppm (mg/kg) (the normal value is 5); PP for automotive interior panels must choose resins with low content of small molecular volatiles. 2. Use additives with larger molecular weights. Use additives with large molecular weights as much as possible, preferably polymer additives, to ensure that they will not volatilize and externally migrate at the processing temperature. (1) If the coupling agent is changed to a compatibilizer, such as a graft polymer or a branched polymer, but the maleic anhydride graft part has a certain odor. (2) Polypentaerythritol stearate (PETS), etc. for lubricant; polyethylene wax (PE-WAX) with molecular weight greater than 5000 for dispersant. (3) The flame retardant should be of polymer type as much as possible, such as brominated polystyrene, brominated epoxy resin, PVC resin, etc. 3. Increase the adsorption of inorganic substances to adsorb the small molecule volatiles that may be produced with high adsorption materials, so that they will not be released under normal conditions. Commonly used inorganic adsorbents are activated carbon, molecular sieve, diatomaceous earth, synthetic calcium silicate, etc. 4. Controlling processing conditions (1) Low temperature production: On the premise of ensuring the full plasticization of the product, lower the processing temperature, thereby reducing the generation of small molecular decomposition substances. (2) Multi-stage vacuuming: increase the number of vacuuming, which can reach level 3 or even level 4, and remove the generated small molecule volatiles in time. 5. Reduce the use of organic solvent-based materials (1) Water-based coatings: use water as the dispersion medium to replace organic volatile solvents, the current technology still needs to contain about 20% ether and alcohol solvents, which can only be regarded as low-VOC coatings, not VOC-free coatings. (2) Solid powder coating: without any organic solvent, zero VOC emission. (3) Light-curing coating: The film-forming material is formed by light-curing reaction, which can reduce the use of organic solvents, but often needs to contain about 30% of organic solvents. (4) Water-based adhesives and water-based mold release agents: products with low content of organic solvents are currently available. At present, consumers are more and more strict with the VOC requirements of plastics used in automotive interiors. How to reduce the release of VOCs during the processing and use of modified plastics is the research focus of various modification companies. Now there is a new type of VOC solvent recovery device. This device uses activated carbon fiber (ACF) as an absorbent to treat waste gas containing organic solvents ( ( VOC ) discharged from various factories or equipment, and convert the VOC into liquid for separation, and Recycle and reuse. VOC is the English abbreviation of volatile organic compounds, a class of carbon compounds that can participate in atmospheric photochemical reactions. Such substances are often used in raw materials and solvents.In the production process, it enters the atmosphere through different means, and then pollutes the atmosphere. Using activated carbon fiber as an adsorbent, it undertakes the design, processing and manufacturing of VOC waste gas adsorption and recovery devices. More VOC solvent recovery devices http://www.standard-groups.cn/chanpin/glcljcy/qkxfjwkfxy/3681.html

GET IN TOUCH WITH Us
recommended articles
Bally Leather Flexing Tester GT-KC10A Assembly Guide
This comprehensive guide provides detailed instructions for the proper assembly, calibration, and operation of the Bally Leather Flexing Tester GT-KC10A. Essential for quality control labs, it ensures accurate testing of flex resistance in leather, coated fabrics, and textiles used in footwear uppers, helping to prevent material failure.
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
What is a Light Fastness Tester?
A Light Fastness Tester accelerates material aging by simulating sunlight (xenon lamps) and moisture to predict long-term durability. Used in textiles, automotive, plastics, and more, it follows AATCC TM 16, ISO 105-B02, and ASTM standards. Features include real-time light control, temperature/humidity regulation, and energy-efficient testing.
A Complete Guide to Martindale Testing by the Best Martindale Abrasion Tester Supplier
Durability is critical for textiles and footwear, and Martindale testing is the gold standard for measuring abrasion resistance and pilling performance. This guide dives into Martindale testing’s core mechanics (Lissajous figure multi-directional friction), strategies to boost testing accuracy (sample clamping, load calibration, abrasive standardization), and compliance with international standards (ISO 12947, ASTM D4966, EN). As a top Martindale abrasion tester supplier with 25+ years of expertise, GESTER International delivers high-precision instruments (Martindale Abrasion Tester GT-C13B, etc.) certified to ISO 9001 and trusted by SGS, Bureau Veritas, and other global testing institutes. Beyond machinery, GESTER offers global technical support, on-site installation, and calibration services. The guide also includes a procurement framework to help labs select tailored Martindale testing solutions. For reliable, standard-compliant durability testing, GESTER is your trusted partner.
How to Improve Textile Quality with the Fabric Bursting Strength Tester
Ensure textile durability with the GT-C12A Fabric Bursting Strength Tester, a pneumatic testing device for woven/knitted fabrics, nonwovens, paper & leather. Compliant with ISO, ASTM, & JIS standards, it offers precise digital readings, automatic sensing, and intelligent software for quality control. Discover how this tester improves material performance & prevents defects in production.
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
How to Choose Light Fastness Tester: Water-Cooled and Air-Cooled
Choosing between water-cooled and air-cooled light fastness testers depends on precision needs, budget, and application. Water-cooled testers (like GESTER GT-3000) offer superior spectral accuracy and stability for rigorous standards (e.g., automotive, coatings). Air-cooled models (like GESTER GT-D02A-1) provide energy efficiency and easier installation for routine QC. This guide compares cooling methods, features, and applications to help you select the optimal tester.
An Introduction to Footwear Electric Shock Resistant Tester GT-KB42
The GT-KB42 Footwear Electric Shock Resistant Tester by GESTER assesses the dielectric strength of safety shoes, boots, and insulating footwear to prevent workplace electrical hazards. Complying with ANSI, CSA, GB, and ASTM standards, it features precision voltage control, real-time leakage monitoring, and multi-standard compatibility—ideal for power utilities, construction, and industrial safety applications.
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
Why TDM Cut Test Machine GT-KC28 Is Needed in PPE Testing

Cut resistance is one of the most critical performance indicators in personal protective equipment (PPE) testing, directly affecting worker safety in high-risk industries such as metal processing, machinery manufacturing, and emergency rescue. The TDM Cut Test Machine GT-KC28 plays a vital role in accurately evaluating the cut resistance of PPE products, including gloves, protective clothing, footwear materials, composite materials, rubber, and industrial textiles.

By adopting high-precision force control systems, intelligent data processing, and stable transmission technology, the GT-KC28 TDM Cut Tester can accurately measure the critical cutting force of materials and ensure excellent repeatability and comparability of test results. Its user-friendly touch-screen operation, comprehensive data storage, USB data export, and built-in thermal printer greatly improve laboratory efficiency and data traceability.

The TDM Cut Test Machine GT-KC28 fully complies with major international and national standards such as ISO 13997, EN 388, ASTM F2992/F2992M, ANSI/ISEA 105, and GB 24541-2022, making it a reliable solution for PPE manufacturers, third-party testing laboratories, and research institutions. Through precise and standardized cut resistance testing, the GT-KC28 helps reduce industrial cutting injuries, supports PPE certification across global markets, and ensures that protective equipment delivers reliable safety performance in real-world applications.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect