loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Cost-effective railway solutions: bearing and wheel sensors

Our roads and flyovers are already crowded with vehicles, so we need to turn to another transportation solution: rail. This shift has played a major role in driving the rail industry to improve infrastructure and maintenance processes. Therefore, approximately 25% to 35% of train operating expenses are used for track maintenance needs. What is needed is a cost-effective rail solution. The need for solutions that optimize jobs in the rail industry is becoming more and more important. These solutions will help find defects in the early stages of development, allowing operators to fix damage before it becomes severe. When a vehicle is scheduled for repair or overhaul, understanding damage and severity is beneficial, reducing operational issues, optimizing fleet availability, and reducing overall loss and disruption costs. Mechanical Sensors One of the solutions implemented is mechanical sensors. These sensors are used to measure track geometry. Before the introduction of ultrasonic transducers in railway inspection in 1953, electromagnetic technology was one of the main tools for detecting internal defects in railways in high-speed railway networks. Since then, various inspection methods have been used to monitor the health of rail infrastructure or as a measure to prevent rail failures. Track bearings and wheels are an important part of a train; any defect can have serious consequences. Premature failure of rail axle bearings can lead to significant increases in train operating costs and can affect train safety. A healthy bearing will generate some level of vibration and noise, but a defective bearing will generate considerable vibration and noise levels. Likewise, wheel defects on railway wagons have been identified as a significant source of damage to railway infrastructure and rolling stock. They also cause noise and vibration emissions, which are costly to mitigate. Defects in railway vehicle wheels directly contribute to the increase in wear and damage to railway infrastructure. As a result, this increases additional costs for maintenance and repairs, thereby shortening the life and availability of rolling stock. Early detection of train wheel defects plays an important role in providing train operators with timely information on necessary repairs, which can prevent further wheel deterioration and further damage to railway infrastructure. Over the past few decades, with the help of data-driven railways, there has been an increased focus on the quality of measurement technology used to support decision-making in the railway sector. Traditionally, high-precision inspections have been carried out against established standards, or where inspections are impractical, periodic actions have been used to support safety-based decision-making within the railway. While safety remains a top priority, maintenance decisions have received increasing attention. Condition monitoring systems are designed to identify the condition of an asset and inform the decision-making process. As a result, this helps reduce the incidence of urgent and costly unplanned interventions, thereby improving performance and safety. Sensing Technologies Different sensing technologies monitor axlebox bearings and wheels, such as vibration/acceleration, microphone/sound measurement, acoustic emission/ultrasonic and thermal. Vibration, sound measurement and ultrasonic techniques are used to detect early defects. Thermal sensors, on the other hand, are based on detecting the heat generated by severely defective bearings and wheels. Rail operators have raised the need for more cost-effective and environmentally friendly solutions. This has led to many technologies being integrated into the sensor itself to reduce additional costs. For example, new sensors on the market are based on vibrational energy harvesting technology within piezoelectric PVDF materials, which is environmentally friendly and low-cost. The technology, combined with a sensor design, utilizes piezoelectric PVDF materials to convert vibrations into electricity. The technology is based on a cantilever structure, and when the cantilever vibrates, the electrical energy it produces is stored in a supercapacitor. After that, the electricity from the capacitor is delivered to the sensor. In conclusion, the current market places special demands on the railway industry, leading to an increased demand for cost-effective and safety-oriented solutions. Rail axle bearings and wheel sensors play an important role in detecting early defects that can lead to serious consequences. Energy harvesting technologies also play a role in saving money and the environment.

GET IN TOUCH WITH Us
recommended articles
Box Compression Tester GT-N02B: The Key to Accurate Determination of Packaging Compression Strength
The GT-N02B Box Compression Tester is a high-precision machine designed to evaluate the compressive strength of cartons and packaging materials. With advanced motor control, fast operation, and multi-functional testing capabilities, it ensures reliable results for quality assurance in manufacturing and logistics.
Welcom UK Client Visits GESTER: A Journey of Partnership
GESTER specializes in R&D and production of advanced textile testing equipment, covering fabric, yarn, color fastness, and flammability tests. Our UK client visit highlights our commitment to quality, customization, and efficient service, reinforcing trust for long-term partnerships.
What is The Test for Bond Strength?
The GT-N25 Bond Strength Tester evaluates interlayer bonding in paper, cardboard & composites (e.g., aluminum foil films). Ensures durability & quality compliance with GB/T, ASTM & TAPPI standards.
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
How to Test Firefighter Turnout Gear Thermal Protection?
Firefighter turnout gear plays a critical role in protecting firefighters operating in extreme environments involving high temperatures, flames, radiant heat, and convective heat. Its thermal protective performance directly affects firefighter safety and survival during fireground operations. This article explains how to test firefighter turnout gear thermal protection through Thermal Protective Performance (TPP) testing. It introduces the scientific principle based on the Stoll curve, outlines key influencing factors such as heat flux intensity and exposure time, and reviews internationally recognized standards including NFPA 1971 and ISO 17492. The article also highlights the testing advantages of the GT-RC02 TPP Thermal Protection Tester, which provides accurate, stable, and standards-compliant evaluation of flame-retardant protective clothing materials under combined radiant and convective heat exposure.
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
How to Improve Plastic Film Drop Dart Impact Strength
Discover actionable strategies to enhance the drop dart impact strength of plastic films for packaging, agriculture, and construction. Learn how material selection, additives, processing, and rigorous ASTM/ISO drop dart impact testing ensure product durability and prevent failure.
Bally Leather Flexing Tester GT-KC10A Assembly Guide
This comprehensive guide provides detailed instructions for the proper assembly, calibration, and operation of the Bally Leather Flexing Tester GT-KC10A. Essential for quality control labs, it ensures accurate testing of flex resistance in leather, coated fabrics, and textiles used in footwear uppers, helping to prevent material failure.
What Are the Types of Color Fastness Testing for Fabrics?
Color fastness testing evaluates how well fabrics resist fading or bleeding under conditions like washing, rubbing, light exposure, and perspiration. Key tests include rubbing fastness, washing fastness, light fastness, perspiration fastness, and sublimation fastness. These tests ensure textiles maintain color integrity, prevent health risks, and meet quality standards. Learn about different testing methods and equipment used in the textile industry.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect