loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

Cost-effective railway solutions: bearing and wheel sensors

Our roads and flyovers are already crowded with vehicles, so we need to turn to another transportation solution: rail. This shift has played a major role in driving the rail industry to improve infrastructure and maintenance processes. Therefore, approximately 25% to 35% of train operating expenses are used for track maintenance needs. What is needed is a cost-effective rail solution. The need for solutions that optimize jobs in the rail industry is becoming more and more important. These solutions will help find defects in the early stages of development, allowing operators to fix damage before it becomes severe. When a vehicle is scheduled for repair or overhaul, understanding damage and severity is beneficial, reducing operational issues, optimizing fleet availability, and reducing overall loss and disruption costs. Mechanical Sensors One of the solutions implemented is mechanical sensors. These sensors are used to measure track geometry. Before the introduction of ultrasonic transducers in railway inspection in 1953, electromagnetic technology was one of the main tools for detecting internal defects in railways in high-speed railway networks. Since then, various inspection methods have been used to monitor the health of rail infrastructure or as a measure to prevent rail failures. Track bearings and wheels are an important part of a train; any defect can have serious consequences. Premature failure of rail axle bearings can lead to significant increases in train operating costs and can affect train safety. A healthy bearing will generate some level of vibration and noise, but a defective bearing will generate considerable vibration and noise levels. Likewise, wheel defects on railway wagons have been identified as a significant source of damage to railway infrastructure and rolling stock. They also cause noise and vibration emissions, which are costly to mitigate. Defects in railway vehicle wheels directly contribute to the increase in wear and damage to railway infrastructure. As a result, this increases additional costs for maintenance and repairs, thereby shortening the life and availability of rolling stock. Early detection of train wheel defects plays an important role in providing train operators with timely information on necessary repairs, which can prevent further wheel deterioration and further damage to railway infrastructure. Over the past few decades, with the help of data-driven railways, there has been an increased focus on the quality of measurement technology used to support decision-making in the railway sector. Traditionally, high-precision inspections have been carried out against established standards, or where inspections are impractical, periodic actions have been used to support safety-based decision-making within the railway. While safety remains a top priority, maintenance decisions have received increasing attention. Condition monitoring systems are designed to identify the condition of an asset and inform the decision-making process. As a result, this helps reduce the incidence of urgent and costly unplanned interventions, thereby improving performance and safety. Sensing Technologies Different sensing technologies monitor axlebox bearings and wheels, such as vibration/acceleration, microphone/sound measurement, acoustic emission/ultrasonic and thermal. Vibration, sound measurement and ultrasonic techniques are used to detect early defects. Thermal sensors, on the other hand, are based on detecting the heat generated by severely defective bearings and wheels. Rail operators have raised the need for more cost-effective and environmentally friendly solutions. This has led to many technologies being integrated into the sensor itself to reduce additional costs. For example, new sensors on the market are based on vibrational energy harvesting technology within piezoelectric PVDF materials, which is environmentally friendly and low-cost. The technology, combined with a sensor design, utilizes piezoelectric PVDF materials to convert vibrations into electricity. The technology is based on a cantilever structure, and when the cantilever vibrates, the electrical energy it produces is stored in a supercapacitor. After that, the electricity from the capacitor is delivered to the sensor. In conclusion, the current market places special demands on the railway industry, leading to an increased demand for cost-effective and safety-oriented solutions. Rail axle bearings and wheel sensors play an important role in detecting early defects that can lead to serious consequences. Energy harvesting technologies also play a role in saving money and the environment.

GET IN TOUCH WITH Us
recommended articles
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
How to Test Firefighter Turnout Gear Thermal Protection?
Firefighter turnout gear plays a critical role in protecting firefighters operating in extreme environments involving high temperatures, flames, radiant heat, and convective heat. Its thermal protective performance directly affects firefighter safety and survival during fireground operations. This article explains how to test firefighter turnout gear thermal protection through Thermal Protective Performance (TPP) testing. It introduces the scientific principle based on the Stoll curve, outlines key influencing factors such as heat flux intensity and exposure time, and reviews internationally recognized standards including NFPA 1971 and ISO 17492. The article also highlights the testing advantages of the GT-RC02 TPP Thermal Protection Tester, which provides accurate, stable, and standards-compliant evaluation of flame-retardant protective clothing materials under combined radiant and convective heat exposure.
Understanding UV Aging Chambers: Applications, Features, and Advantages
The GT-C29 UV Aging Chamber simulates years of environmental damage in days using UVA-340 lamps, rain, and temperature cycles. Ideal for paints, plastics, automotive, and wood industries, it offers high accuracy, cost efficiency, and safety. Learn how it accelerates R&D and quality control.
Four Color Fastness Test Method for Laboratory Drying Oven
GESTER’s laboratory drying oven is designed for textile color fastness testing, including perspiration, seawater, water, and saliva resistance. Compliant with ISO, AATCC, GB, and JIS standards, it ensures precise heating and drying for accurate test results. Learn the step-by-step four color fastness test method and its applications.
Must-See Innovation: Leading Safety Helmets Tester Company at A+A International Trade Fair
The A+A International Trade Fair in Düsseldorf serves as the global hub for occupational safety and PPE innovation, where GESTER—an industry leader with over 20 years of R&D experience—shines as a top safety helmets tester company. This article explores the evolving global safety standards (ISO, ASTM, EN, ANSI) driving demand for advanced testing equipment, and highlights GESTER’s high-precision solutions for impact absorption, penetration resistance, and flame resistance testing. With ISO 9001 certification, computerized automation, real-time data capture, and a comprehensive global support framework (on-site installation, calibration, OEM/ODM services), GESTER empowers PPE manufacturers and laboratories to meet rigorous compliance requirements. The company’s presence at A+A underscores its commitment to bridging innovative PPE design with reliable safety validation, helping businesses accelerate time-to-market while ensuring worker protection worldwide.
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
According to ASTM D642 Standard: Detailed Box Compression Strength Tester GT-N02A
The ASTM D642 standard defines the test method for determining the compressive resistance of shipping containers, like corrugated boxes, when faced with static compressive forces. This article details the test procedure and introduces the GESTER GT-N02A and GT-N02B Box Compression Testers, which are fully compliant with ASTM D642, ISO 12048, and TAPPI T804. These versatile machines perform destructive strength tests, constant value tests, and simulated long-term stacking tests to ensure your pac
Understanding Universal Tensile Testing machine: Feature, Operation
Discover how universal testing machines perform tensile, compression, bending, and peel tests on metals, plastics, rubber, and composites. Features include servo motors, 0.001mm resolution, RS232 data, and safety systems. Step-by-step operation guide included.
Elmendorf Tearing Strength Tester GT-C11A You Should Know
The Elmendorf Tearing Strength Tester GT-C11A is a pivotal instrument for evaluating the tearing resistance of various materials, including textiles, non-wovens, paper, and films. Utilizing the proven pendulum method, it delivers precise, repeatable data crucial for quality assurance, product development, and compliance with international standards like ASTM and ISO. This article explores its working principle, key features such as automated testing and pneumatic clamping, and its wide-ranging applications across multiple industries, highlighting why the GT-C11A is a trusted choice for professionals seeking reliable and efficient material performance analysis.
A Complete Guide to Martindale Testing by the Best Martindale Abrasion Tester Supplier
Durability is critical for textiles and footwear, and Martindale testing is the gold standard for measuring abrasion resistance and pilling performance. This guide dives into Martindale testing’s core mechanics (Lissajous figure multi-directional friction), strategies to boost testing accuracy (sample clamping, load calibration, abrasive standardization), and compliance with international standards (ISO 12947, ASTM D4966, EN). As a top Martindale abrasion tester supplier with 25+ years of expertise, GESTER International delivers high-precision instruments (Martindale Abrasion Tester GT-C13B, etc.) certified to ISO 9001 and trusted by SGS, Bureau Veritas, and other global testing institutes. Beyond machinery, GESTER offers global technical support, on-site installation, and calibration services. The guide also includes a procurement framework to help labs select tailored Martindale testing solutions. For reliable, standard-compliant durability testing, GESTER is your trusted partner.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect