loading

Gester Instruments | Professional Textile, Footwear and PPE  Testing  Equipments Manufacturers Since 1997


Products
Test Standard
Products
Test Standard

The role of nanofiber thermal insulation materials in aerospace

Aerospace aircraft needs to withstand aerodynamic heating for a long time during flight, and the surface of the substrate will generate high temperature. In order to ensure the safety of the main structure of the aircraft and the safety of internal instruments and equipment, high-efficiency thermal insulation materials must be used to prevent external heat flow from diffusing to the interior. At the same time, the lightweight and efficient thermal insulation protection system is of great significance for reducing the aircraft load and extending the flight distance. Nanofiber material has the advantages of small pore size and high porosity, and is an ideal lightweight and efficient thermal insulation material. This paper mainly introduces the latest research progress of two-dimensional nanofiber membranes and three-dimensional nanofiber aerogel thermal insulation materials. Two-dimensional nanofiber membrane thermal insulation material: Small spaces such as missile battery heat shields and engines require materials with small thickness but excellent thermal insulation performance. Two-dimensional nanofiber membrane materials have a small fiber diameter and a controllable stacking thickness (generally less than 100μm), the advantages of high porosity can be used for thermal insulation in small spaces. Nanofiber membrane insulation materials can be divided into polymer nanofiber membranes, carbon nanofiber membranes and ceramic nanofiber membranes according to their composition. Polymer nanofibers, such as polyvinylidene fluoride (PVDF) nanofiber membranes, have higher porosity and tortuous mesh channels, so that the transmission path of air molecules inside the material is longer, and heat is lost during propagation. , thus reducing the thermal conductivity of the material. In order to further reduce the thermal conductivity of the material, some scholars have coated SiO2 nanoparticles on the surface of PVDF nanofibers by impregnation modification technology to further reduce the pore size of the fiber membrane and reduce thermal convection. However, the structure of this material is easily damaged in a high temperature environment, making it difficult to meet application requirements. Carbon nanofibers have the advantages of large specific surface area, high porosity, good chemical stability, and high specific strength, and have broad application prospects in electronics, energy, aerospace and other fields. With the increase of the degree of graphitization, the high temperature resistance of carbon nanofiber membrane materials will gradually improve, but its thermal insulation performance will also be greatly reduced, so it is difficult to meet the needs of simultaneous improvement of high temperature resistance and thermal insulation performance. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, good insulation, etc., and have a wide range of applications in high temperature heat insulation, sound absorption, catalysis and other fields. However, most of the existing ceramic nanofibers have defects such as high brittleness, poor mechanical properties, and inability to bend, which limit their practical use. In order to overcome this shortcoming, some scholars have prepared SiO2 nanofiber membranes with amorphous structure and good flexibility by adjusting the properties and process parameters of the spinning solution. At the same time, SiO2 aerogel nanoparticles can also be introduced between fibers by impregnation modification method to construct SiO2 nanoparticle/nanofiber composite materials, and improve the thermal insulation performance of SiO2 nanofiber membrane. Three-dimensional nanofiber aerogel thermal insulation material: Although two-dimensional nanofibers have good thermal insulation properties, it is difficult to achieve an effective increase in the thickness direction (> 1 cm), which seriously limits their use in high-power engine thermal insulation, cabin insulation, etc. Application in the field of wall fire protection and heat insulation. Compared with two-dimensional nanofibrous membranes, three-dimensional nanofibrous aerogel materials have the advantages of controllable size, high porosity, and high degree of pore tortuosity, so they have broad application prospects in the fields of heat insulation, heat preservation, and sound absorption. At present, the common nanofiber aerogel insulation materials mainly include polymer nanofiber aerogel and ceramic nanofiber aerogel. Ceramic nanofiber aerogel: Ceramic aerogel material has excellent high temperature resistance, corrosion resistance and thermal insulation properties, and is one of the main materials for thermal protection of aerospace vehicles. The currently used aerogel insulation materials are mainly SiO2 nanoparticle aerogels reinforced by ceramic fibers. Due to the weak interaction between the nanoparticles and the ceramic fibers, the nanoparticles are easy to fall off during the use of the material, so that the structure of the material is stable. The performance and thermal insulation performance are greatly reduced. In order to solve the above problems, some scholars have used flexible ceramic nanofibers as building blocks, and used an original three-dimensional fiber network reconstruction method to construct ultra-light and super-elastic ceramic nanofiber aerogel materials. The aerogel material has a honeycomb-like mesh structure, and fibers in each mesh are entangled and bonded to each other to form a stable fiber network, which endows the aerogel with good structural stability. It can still rebound rapidly under large deformation (80% strain) compression, and its plastic deformation is only 12% after 500 compression cycles, which is superior to the existing ceramic aerogel materials. At the same time, the material can still recover after being compressed by 50% under the flame of an alcohol lamp (about 600 °C) and a butane torch (about 1100 °C), showing excellent high-temperature compression resilience. Polymer nanofiber aerogel: Aiming at the problems of poor mechanical properties and high brittleness of existing aerogel materials. Some scholars used cellulose nanocrystals with high elastic modulus, high strength and low density as building blocks, and prepared cellulose nanocrystal aerogels with good transparency and mechanical properties by gel and supercritical drying methods. bendable to 180°Without failure, it can still recover after compression under large deformation (80%) and the maximum stress is greater than 200 kPa. In addition, cellulose nanocrystals also exhibited excellent thermal insulation properties.

If you are looking for an effective and safe way to take care of tensile tester manufacturers, then textile testing equipment tensile tester manufacturers are the best bet.

is making its name in professional tensile tester manufacturers all over the world, and with GESTER International Co.,Limited taking great care to make an excellent product & actively involved in keeping the industry well-regulated, it's a product that should make its way into your tensile tester manufacturers.

GESTER International Co.,Limited expects to reach the desired profits in the first year and does not anticipate serious cash flow problems.

GET IN TOUCH WITH Us
recommended articles
Sweating Guarded Hotplate GT-C98 Guide: Find the Right Testing Machine for Your Needs
The Sweating Guarded Hotplate GT-C98 is a professional instrument designed to evaluate the thermal resistance (Rct) and water-vapor resistance (Ret) of textiles and related materials. By simulating human skin heat dissipation and sweating under controlled conditions, it provides accurate and repeatable data for comfort and protective performance analysis. This guide introduces the testing principle, applicable international standards, industry applications, and key technical features to help users identify the right testing machine for product development, quality control, and research.
Leather Physical Properties Testing Guide
This guide details the 9 critical physical property tests essential for assessing leather quality: Tensile Strength, Tear Strength, Abrasion Resistance, Thickness, Water Vapor Permeability, Water Resistance, Shrinkage Temperature, Color Fastness to Friction, and Bending Strength. It covers the testing scope (natural leather, synthetic leather, finished products, semi-finished goods) and introduces specialized testing equipment required for each method (e.g., Universal Testing Machine, Elmendorf
Top Features of a Certified TDM Cut Resistance Tester Supplier for Laboratory Use
The demand for precise PPE safety testing has surged with the evolution of protective gear, making TDM (Tomodynamometer) cut resistance testing a critical process for evaluating protective gloves and industrial textiles. This article details the top features of a certified TDM cut resistance tester supplier for laboratory use, including compliance with international standards (EN 388, ISO 13997, ASTM F2992), high-precision mechanical engineering, automated workflows, robust data management, and integrated safety features. It highlights GESTER International Co., Ltd.—a 20+ year experienced manufacturer with ISO 9001 certification and partnerships with SGS, Intertek, and TUV—as a leading supplier, offering the GT-KC28 TDM Cut Test Machine and comprehensive services (on-site installation, calibration, global technical support). For laboratories seeking reliable, standard-compliant testing solutions to validate PPE safety claims, this article provides actionable insights into strategic procurement. Visit https://www.gesterinstruments.com/ for more technical specifications and PPE testing solutions.
How to Choose Light Fastness Tester: Water-Cooled and Air-Cooled
Choosing between water-cooled and air-cooled light fastness testers depends on precision needs, budget, and application. Water-cooled testers (like GESTER GT-3000) offer superior spectral accuracy and stability for rigorous standards (e.g., automotive, coatings). Air-cooled models (like GESTER GT-D02A-1) provide energy efficiency and easier installation for routine QC. This guide compares cooling methods, features, and applications to help you select the optimal tester.
How to Know the Fabric Shrinkage Test for Your Projects
Master fabric shrinkage testing with this definitive guide. Understand causes of shrinkage, industry standards (ISO, GB, AATCC), step-by-step testing methods using Wascator equipment, and strategies to minimize shrinkage for superior garment quality and customer satisfaction.
Elmendorf Tearing Strength Tester GT-C11A You Should Know
The Elmendorf Tearing Strength Tester GT-C11A is a pivotal instrument for evaluating the tearing resistance of various materials, including textiles, non-wovens, paper, and films. Utilizing the proven pendulum method, it delivers precise, repeatable data crucial for quality assurance, product development, and compliance with international standards like ASTM and ISO. This article explores its working principle, key features such as automated testing and pneumatic clamping, and its wide-ranging applications across multiple industries, highlighting why the GT-C11A is a trusted choice for professionals seeking reliable and efficient material performance analysis.
Installation Training for the Incline Impact Tester GT-N49
Our expert team provides comprehensive on-site installation and training for the Incline Impact Tester GT-N49. This critical packaging testing equipment simulates real-world impacts during handling, transport, and stacking to evaluate product damage resistance. Learn about its key features like flexible moving plates, height adjustment, pneumatic angle control, and remote operation safety. Our service ensures proper setup, operational mastery, maintenance guidance, and troubleshooting support fo
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
Why GESTER Ranks as a Leading TPP Thermal Protective Performance Tester Exporter
As a trusted leading TPP Thermal Protective Performance Tester exporter, GESTER International Co., Ltd. brings 25+ years of R&D and manufacturing expertise to PPE safety testing. Our flagship GT-RC02 series TPP testers feature advanced dual-source thermal simulation, high-sensitivity sensors, and full digital automation—delivering precise, repeatable data to evaluate thermal protection for firefighter and industrial protective clothing. Fully compliant with global standards (NFPA 1971, EN 469, ISO), GESTER’s equipment is trusted by SGS, Intertek, and top testing institutes worldwide. Backed by ISO 9001 certification, global service in 160+ countries, and professional calibration support, we empower manufacturers and labs to meet stringent safety regulations and ensure life-saving thermal protection. Discover tailored TPP testing solutions for PPE excellence at GESTER.
Technical Insight: How a Professional EN388 Gloves Tester Company Evaluates Durability
In industrial settings, protective gloves’ durability is critical for workplace safety, with the EN388 standard serving as the global benchmark for evaluating abrasion, cut, tear, and puncture resistance. GESTER International Co., Ltd., a professional EN388 gloves tester company with over 20 years of experience, delivers high-precision testing solutions to ensure accurate and reliable durability assessments. Equipped with advanced instruments like the Safety Glove & Shoe Upper Cutting Tester GT-KC29—featuring LCD display, real-time monitoring, and compliance with EN, ISO, and ASTM standards—GESTER’s solutions meet the rigorous demands of laboratories, manufacturers, and international testing institutes such as SGS, TUV, and Intertek. Adhering to ISO 9001 quality management systems and offering comprehensive after-sales support (installation, training, calibration), GESTER empowers clients to validate PPE performance, mitigate workplace risks, and achieve global regulatory compliance. For trusted EN388 gloves durability testing equipment and integrated laboratory solutions, GESTER is the preferred partner in the PPE industry.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect