loading

Thermal oxidative aging of butadiene rubber and its mechanism

Butadiene rubber (also known as polybutadiene rubber) has the advantages of high elasticity, cold resistance, abrasion resistance, flexural resistance and good dynamic performance. It is currently mainly used in tires, shoemaking, high-impact polystyrene and ABS resins. Modification and other fields. There are unsaturated bonds in the structure of butadiene rubber. Under the conditions of hot oxygen or ultraviolet light, it is susceptible to the attack of oxygen free radicals, causing its composition and structure to be destroyed, thereby greatly reducing its performance. At present, most studies on the aging of butadiene rubber focus on the changes in physical and mechanical properties [5-7], and there is almost no research on the changes in the chemical structure of the aging process. In this paper, butadiene rubber is used as raw material to conduct thermal and oxygen aging research, using hydrogen nuclear magnetic resonance spectroscopy (1H-NMR), Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR), and ultraviolet-visible light (UV -Vis) absorption spectroscopy focuses on exploring its chemical structure changes and aging mechanism. So far, there have been no reports on the methods and results of using nuclear magnetic resonance spectroscopy to study the aging of butadiene rubber. This is of great significance for the development of new formulas and protective measures to improve the storage and service life of butadiene rubber. 1 Experimental part 1.1 Raw material butadiene rubber (BR≥98%): commercially available; Deuterated chloroform (CDCl3): D>99.8%, TMS 0.03%, Sigma-Aldrich; Cyclohexane: analytical pure, Xilong Science Co., Ltd. Limited company. 1.2 Experimental instruments Nuclear magnetic resonance spectrometer: Bruker Avance 400 MHz, Bruker, Germany; Infrared spectrometer: Nicolet iS10, Nicolet Instruments, USA; UV-Visible spectrophotometer: UV-2550, Shimadzu Corporation, Japan. 1.3 Sample preparation and aging test Sample preparation: Dissolve 3 g of butadiene rubber in a three-necked flask containing 30 g of cyclohexane, heat and stir at 80 ℃ for 2 hours to fully dissolve it, cool to room temperature, and drop it quantitatively. Make a thin film on a glass slide. Put it in a fume hood and wait until all the reagents evaporate. The film thickness is about 0.02 mm. Thermal oxidative aging: According to the national standard GB/T3512-2001 [8] (hot air accelerated aging and heat resistance test of vulcanized rubber or thermoplastic rubber), put the finished butadiene rubber film in an electric heating constant temperature blast drying box, and set the temperature It is 120 ℃, aging for 0.5 d, 1 d, 2 d, 3 d, 5 d, 7 d, 10 d, 15 d, and then take it out for testing. 1.4 Test and Characterization 1.4.1 ATR-FT-IR test: using Attenuated Total Refraction (ATR) technology, scanning times 16 times, scanning range 500~4000 cm-1, direct infrared test on the butadiene rubber film [9]. 1.4.2 1H-NMR test: Cut about 10 mg of butadiene rubber film and dissolve it in 0.5 mL of deuterated chloroform, and carry out the proton nuclear magnetic resonance spectrum test. 1.4.3 UV-vis test: Cut out about 2 mg of butadiene rubber film, dissolve it in 10 mL cyclohexane, and perform UV spectrum test. The scanning range is 500~190 nm, the speed is medium, and the scanning gap is 0.5 mm. 1.5 Calculation of the reaction rate 2 Results and discussion 2.1 The infrared spectrum of the thermal oxidative aging process of the butadiene rubber Fig. 1 is the ATR-FT-IR spectrum of the butadiene rubber before and after 15 days of aging. Among them, in the infrared spectrum of unaged butadiene rubber, 3068 cm-1 is u003dCH2 antisymmetric stretching vibration, and 3004 cm-1 and 1654 cm-1 are cis-1,4-butadiene structural units- CH2u003dCH2 stretching vibration peak, 2939 cm-1 is the antisymmetric stretching vibration peak of CH on the methylene group -CH2, 1448 cm-1 is the swing vibration peak of CH on the methylene group -CH2-, 993 cm-1 And 911 cm-1 are the out-of-plane swing vibration peaks of -CH2, and 736 cm-1 is the repeating unit -CH2-CH2- in-plane swing vibration peaks, which are also characteristic bands of cis-1,4 butadiene rubber structure [10]. When the butadiene rubber was thermally and oxidized at 120 ℃ for 0.5 d, it was observed that the infrared spectrum began to change, and obvious new material peaks appeared.

GESTER International Co.,Limited has an array of branches in domestic for servicing customers with high-quality products.

GESTER International Co.,Limited builds value for our investors through the strength of our customers’ satisfaction and by consistently producing superior operating results.

Overall, textile testing equipment may be a great way for manufacturers to expand their use of technology, but the price could present a significant hurdle for some businesses.

GET IN TOUCH WITH Us
recommended articles
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
How to Choose Light Fastness Tester: Water-Cooled and Air-Cooled
Choosing between water-cooled and air-cooled light fastness testers depends on precision needs, budget, and application. Water-cooled testers (like GESTER GT-3000) offer superior spectral accuracy and stability for rigorous standards (e.g., automotive, coatings). Air-cooled models (like GESTER GT-D02A-1) provide energy efficiency and easier installation for routine QC. This guide compares cooling methods, features, and applications to help you select the optimal tester.
Understanding the Color Fastness To Washing Testing Machine GT-D07
The GESTER GT-D07 Color Fastness To Washing Testing Machine is designed to evaluate the color durability of dyed fabrics under washing and dry-cleaning conditions. By simulating real washing processes, it helps determine how resistant a fabric is to fading and staining, ensuring consistency, reliability, and compliance with international standards. With stainless-steel construction, safety features, and precise temperature and timing control, the GT-D07 provides an efficient and standardized testing solution for textile manufacturers worldwide.
Exploring Taber Abrasion Tester GT-C14B: The Go-To Equipment for Precision Abrasion Test
The Taber Abrasion Tester GT-C14B is a high-precision instrument designed to evaluate the wear resistance of flat materials, including coatings, plastics, textiles, and automotive components. With adjustable speed, load configurations, and multiple abrasive media, it ensures accurate testing for industries like furniture, automotive, packaging, and dental materials.
Brightness Tester for Paper: Applications, Function, and Standards
The Brightness Tester for Paper is a precision instrument designed to measure the brightness or whiteness of materials, ensuring quality and consistency across industries like papermaking, textiles, chemicals, and food production. This article explores its applications, key functions, and compliance with industry standards such as ISO and GB/T. Learn why this device is essential for maintaining high-quality standards in material production and inspection.
Understanding the Operation of Crush Tester
Crush Testers, such as the GT-N09, are essential tools in the packaging industry for evaluating the compressive strength of materials like cardboard and corrugated boards. This guide provides a detailed overview of testing methods like Edge Crush Test (ECT), Ring Crush Test (RCT), Flat Crush Test (FCT), Concora Medium Test (CMT), and Pin Adhesion Test (PAT). It also includes a step-by-step operation procedure for the GT-N09 Crush Tester and key precautions to ensure accurate and reliable test re
Why is a Computerized Universal Testing Machine Important?
A computerized universal testing machine (UTM) is essential for evaluating material properties like tensile strength, compression, and bending. Widely used in industries such as aerospace, automotive, and footwear, UTMs ensure compliance with ISO, ASTM, and DIN standards while improving accuracy and efficiency in quality control.
Welcom UK Client Visits GESTER: A Journey of Partnership
GESTER specializes in R&D and production of advanced textile testing equipment, covering fabric, yarn, color fastness, and flammability tests. Our UK client visit highlights our commitment to quality, customization, and efficient service, reinforcing trust for long-term partnerships.
Installation Training for the Incline Impact Tester GT-N49
Our expert team provides comprehensive on-site installation and training for the Incline Impact Tester GT-N49. This critical packaging testing equipment simulates real-world impacts during handling, transport, and stacking to evaluate product damage resistance. Learn about its key features like flexible moving plates, height adjustment, pneumatic angle control, and remote operation safety. Our service ensures proper setup, operational mastery, maintenance guidance, and troubleshooting support fo
What is the Use of Air Permeability Tester?
An air permeability tester measures how easily air passes through textiles, nonwovens, and other materials, directly impacting comfort (heat/moisture management) and performance (wind resistance, filtration). This guide explains how digital testers work using pressurized airflow, details step-by-step testing procedures (including nozzle selection), and covers key applications in apparel, medical, automotive, and industrial sectors. Explore compliant standards (ISO 9237, ASTM D737, GB/T 5453) and
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat
 
Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
                + 86 18059985379    
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect