loading

Gester Instruments | Professional Textile Testing Equipment Manufacturers Since 1997


Test Standard
Test Standard

Fiber fineness measurement method based on microscopic image

This method extracts multiple independent fiber targets from the microscopic image and calculates their fineness. The method is as follows: First, take the fiber slice image from the field of view of the biological microscope of the CMOS or CCD image acquisition device; then separate multiple independent fiber targets from the image background that may contain bubbles or impurities. This process is widely used. A combination of differential filtering, median filtering and other filters reduces the impact of impurities and different lighting conditions; then use the Fast Marching algorithm to locate all fibers in the segmented image; finally calculate the fiber fineness to complete the measurement of all fiber fineness . Compared with the existing technology, the invention can avoid the influence of different collection equipment and lighting environment on the segmentation algorithm, and improve the stability of the fiber fineness measurement process and the accuracy of the measurement result. Fiber fineness is the most important parameter for evaluating quality. Traditional methods include manual inspection, airflow method, microprojection method and other methods summarized in the production process. Among them, refer to the International Standard IS0137-85 'Wool Fiber Diameter Test Method Projection Microscope Method' (GB 10685-89) and refer to the United States AATCC-20A-1995 'Quantitative Analysis Method of Linen and Cotton Blended Products Fiber Projection Method' (FZ /T 30003-2000) are the two main measurement standards. Both of these standards use a microscope projector to measure the fibers (more than 100) on each slide under 500 times magnification. Both the microscope method and the projector method have the problems of high labor intensity and low efficiency. The measurement operation of a sample has to concentrate on performing hundreds of thousands of alignment/counting operations under the microscope, which is a monotonous large-scale operation. Repetitive work can easily cause eye fatigue, and the resulting inefficiency and human error are inevitable. In addition, with the development of the textile industry, the issue of inspection standardization, unified inspection procedures and unified measurement standards have been brought about. Finally, more and more measurement work needs to be completed on site in the workshop, which also puts forward requirements for the stability of the recognition algorithm under changing lighting conditions, which cannot be met by traditional methods. For this reason, the fineness measurement technology based on computer image recognition algorithms has attracted more and more attention. So far, there have been some software and related researches aimed at automatic fiber measurement. From a large number of literature searches, research and trials, it is found that most of these systems and studies focus on measurement under laboratory conditions. The algorithm mainly uses fixed thresholds, histogram thresholds or entropy-based segmentation methods to process grayscale images, and then The mathematical morphology method is used for segmentation and boundary extraction. A typical product commonly used in the industry is the 0FDA of Uster, Switzerland, which collects fiber images under a stroboscopic light source and transmits them to the system to complete automatic measurement. Some other special image processing methods, including Hilditc boundary thinning method, or the method of using neural network recognition based on feature extraction, have also been proposed one after another. However, the practical application of these methods is not yet mature, and most methods require manual assistance in the measurement process. In addition, the pretreatment process of almost all methods is limited by the characteristics of the tested sample and the lighting environment, which makes the software system need additional equipment support in actual practical applications, which is not conducive to the realization of portable and industrial field applications. Therefore, the accuracy, adaptability and stability of fiber automatic measurement need to be improved. Aiming at the deficiencies of the existing fiber identification and fiber fineness measurement technology, the present invention provides a fiber fineness measurement method based on microscopic images, which can avoid the influence of different collection equipment and lighting environment on the segmentation algorithm, and improve the fiber fineness measurement. The stability of the process and the accuracy of the measurement results. In order to achieve the above objective, the idea of u200bu200bthe present invention is: the present invention is a significant improvement in the automatic measurement of fiber fineness in microscopic images. The image can be derived from a CCD or CMOS image capture device and is processed and used by a set of filters The constrained i^ast Marching automatic identification algorithm makes the fiber identification, positioning process and fineness calculation result to a certain extent not affected by changes in the lighting environment.

If you have plenty of time, you can learn how to take care of tensile tester manufacturers. Also, invest in the right tensile tester manufacturers textile testing equipment.

If you are looking for an excellent service in the UK then you can go to GESTER International Co.,Limited. They have almost everything what you might require for your tensile tester manufacturers.

Our company is professional in selling textile testing equipment as well as providing a series of relevant services.

GET IN TOUCH WITH Us
recommended articles
Understanding the Color Fastness To Washing Testing Machine GT-D07
The GESTER GT-D07 Color Fastness To Washing Testing Machine is designed to evaluate the color durability of dyed fabrics under washing and dry-cleaning conditions. By simulating real washing processes, it helps determine how resistant a fabric is to fading and staining, ensuring consistency, reliability, and compliance with international standards. With stainless-steel construction, safety features, and precise temperature and timing control, the GT-D07 provides an efficient and standardized testing solution for textile manufacturers worldwide.
GESTER Presents Textile Testing Equipment at SAIGONTEX 2025
At SAIGONTEX 2025, GESTER showcased cutting-edge textile testing equipment, including tensile strength testers, Martindale abrasion testers, and hydrostatic head testers. Our high-precision, durable machines attracted global buyers, reinforcing GESTER’s leadership in textile quality control.
How to Improve Textile Quality with the Fabric Bursting Strength Tester
Ensure textile durability with the GT-C12A Fabric Bursting Strength Tester, a pneumatic testing device for woven/knitted fabrics, nonwovens, paper & leather. Compliant with ISO, ASTM, & JIS standards, it offers precise digital readings, automatic sensing, and intelligent software for quality control. Discover how this tester improves material performance & prevents defects in production.
How to Improve the Accuracy of a Martindale Tester
Ensuring the accuracy of your Martindale abrasion and pilling tester is critical for reliable textile quality control. This guide details essential steps, from precise sample preparation and correct machine operation to routine maintenance. We also explore how advanced testers, like the GESTER model with its dual-servo drive and tool-free operation, are engineered to eliminate common sources of error and enhance testing precision for superior results.
Understanding 3 Positions DIN Abrasion Tester : A Comprehensive Guide
This comprehensive guide explains the 3-Position DIN Abrasion Tester, a rotary drum instrument simulating real-world wear to quantify material abrasion resistance. Learn its working principle (mass/volume loss measurement under controlled friction), key features (touch-screen control, automated dust cleaning), and applications across rubber, tires, footwear, and conveyor belts. Discover compliant standards (DIN 53516, ISO 4649, ASTM D5963), step-by-step operation procedures, and essential mainte
DTG Spotlight: GESTER’s Precision Textile Testing Instruments
At GESTER, we offer cutting-edge textile testing instruments designed for quality assurance in textile production. Showcased at DTG, our instruments like fabric tensile strength testers, Martindale abrasion testers, and color fastness testing equipment ensure textile durability, consistency, and compliance with global standards. With precision testing, GESTER helps manufacturers meet industry demands and deliver top-tier products.
What is the Use of Air Permeability Tester?
An air permeability tester measures how easily air passes through textiles, nonwovens, and other materials, directly impacting comfort (heat/moisture management) and performance (wind resistance, filtration). This guide explains how digital testers work using pressurized airflow, details step-by-step testing procedures (including nozzle selection), and covers key applications in apparel, medical, automotive, and industrial sectors. Explore compliant standards (ISO 9237, ASTM D737, GB/T 5453) and
Shoe Steel Shank Bending Resistance Tester: Everything You Should Know
The Shoe Steel Shank Bending Resistance Tester is a pivotal tool in the footwear industry, designed to assess the strength and flexibility of steel shanks. These components, integral to footwear integrity, undergo rigorous testing to ensure durability and safety. This guide explores the tester’s functionality, advantages, and key operational steps, emphasizing its value for manufacturers committed to delivering high-quality, reliable products.
How to Improve Plastic Film Drop Dart Impact Strength
Discover actionable strategies to enhance the drop dart impact strength of plastic films for packaging, agriculture, and construction. Learn how material selection, additives, processing, and rigorous ASTM/ISO drop dart impact testing ensure product durability and prevent failure.
Shoes & Leather - Guangzhou 2025: GESTER Showcased Footwear testing Equipment on Site
GESTER impressed at Shoes & Leather Guangzhou 2025 by exhibiting high-precision footwear testing equipment like the DIN Abrasion Tester and Bally Flexing Tester, essential for quality control in shoe production. The event fostered industry collaboration, with GESTER attracting global buyers and strengthening partnerships.
no data
QUANZHOU GESTER INTERNATIONAL CO.,LTD gains certificates of ISO 9001, 3A and SGS Audited supplier etc. with advanced design concept, excellent manufacturing technology and strict quality control.
WeChat

Contact us
Tel: +86-595-28886108 
Fax: +86-595-22515221
E-mail: sales10@gester-instruments.com,
                 info@gester-instruments.com
Mobile/Whatapp/ Wechat:  
             + 86 018059983973
Address:  Block 402,4th floor, f buliding, shengfulan business Center, no.577 jitai road, economic and  Technological development zone quanzhou of fujian.China.
Customer service
detect